See axolotl config
axolotl version: 0.4.1
base_model: NousResearch/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
# chat_template: llama3
datasets:
- path: /home/ftcourse/sample_data/crossner_ai_train.jsonl
type: alpaca
# datasets:
# - path: fozziethebeat/alpaca_messages_2k_test
# type: chat_template
# field_messages: messages
# message_field_role: role
# message_field_content: content
# roles:
# user:
# - user
# assistant:
# - assistant
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
hub_model_id: femT-data/llama-3.1-8B-instruct-GNER
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
llama-3.1-8B-instruct-GNER
This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B-Instruct on the Crossner_ai dataset. It achieves the following results on the evaluation set:
- Loss: 0.0363
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5951 | 0.0187 | 1 | 0.6405 |
0.1134 | 0.2617 | 14 | 0.0841 |
0.0224 | 0.5234 | 28 | 0.0434 |
0.0423 | 0.7850 | 42 | 0.0363 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for femT-data/llama-3.1-8B-instruct-GNER
Base model
NousResearch/Meta-Llama-3-8B-Instruct