GGUF version of version of Mistral-7B-Instruct-v0.1

GGUF version of version of Mistral-7B-Instruct-v0.1 compatible with llama.cpp

This is the unquantized fp16 version of the model.

Model Card for Mistral-7B-Instruct-v0.1

The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the Mistral-7B-v0.1 generative text model using a variety of publicly available conversation datasets.

For full details of this model please read our release blog post

Instruction format

In order to leverage instruction fine-tuning, your prompt should be surrounded by [INST] and [\INST] tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.

E.g.

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")

text = "<s>[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
"[INST] Do you have mayonnaise recipes? [/INST]"

encodeds = tokenizer(text, return_tensors="pt", add_special_tokens=False)

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(**model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

Model Architecture

This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:

  • Grouped-Query Attention
  • Sliding-Window Attention
  • Byte-fallback BPE tokenizer

The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.

Downloads last month
16
GGUF
Model size
7.24B params
Architecture
llama

16-bit

Inference Examples
Unable to determine this model's library. Check the docs .