Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: dltjdgh0928/test_instruction
bf16: true
chat_template: llama3
data_processes: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 113bf81f40d02826_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/113bf81f40d02826_train_data.json
  type:
    field_input: context
    field_instruction: title
    field_output: question
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: true
hub_model_id: filipesantoscv11/3790bf57-77a0-4b21-9a30-7367644ec81a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 1.01e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.03
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/G.O.D/113bf81f40d02826_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 92b799bb-893c-464f-bcfe-0b70b350a311
wandb_project: cold9
wandb_run: your_name
wandb_runid: 92b799bb-893c-464f-bcfe-0b70b350a311
warmup_steps: 20
weight_decay: 0.0
xformers_attention: null

3790bf57-77a0-4b21-9a30-7367644ec81a

This model is a fine-tuned version of dltjdgh0928/test_instruction on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8922

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.01e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20
  • training_steps: 200

Training results

Training Loss Epoch Step Validation Loss
No log 0.0005 1 1.7878
0.8376 0.0254 50 1.0367
0.6845 0.0509 100 0.9478
0.7446 0.0763 150 0.9016
0.6583 0.1018 200 0.8922

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for filipesantoscv11/3790bf57-77a0-4b21-9a30-7367644ec81a

Adapter
(216)
this model