furniture-qwen2vl

This model is a fine-tuned version of Qwen/Qwen2-VL-2B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4357

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
0.4458 0.4444 500 0.3009
0.3612 0.8889 1000 0.3340
0.3343 1.3333 1500 0.3580
0.3203 1.7778 2000 0.3702
0.3063 2.2222 2500 0.3925
0.3033 2.6667 3000 0.4087
0.2936 3.1111 3500 0.4150
0.2848 3.5556 4000 0.4184
0.2851 4.0 4500 0.4290
0.2793 4.4444 5000 0.4350
0.2799 4.8889 5500 0.4357

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
21
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for filnow/furniture-qwen2vl

Base model

Qwen/Qwen2-VL-2B
Adapter
(49)
this model