nbeerbower's picture
Update README.md
5389d02 verified
|
raw
history blame
2.68 kB
metadata
library_name: transformers
license: apache-2.0
base_model:
  - nbeerbower/Mahou-1.2a-mistral-7B
datasets:
  - flammenai/MahouMix-v1
  - flammenai/FlameMix-DPO-v1

image/png

Mahou-1.2b-mistral-7B

Mahou is designed to provide short messages in a conversational context. It is capable of casual conversation and character roleplay.

Chat Format

This model has been trained to use ChatML format.

<|im_start|>system
{{system}}<|im_end|>
<|im_start|>{{char}}
{{message}}<|im_end|>
<|im_start|>{{user}}
{{message}}<|im_end|>

Roleplay Format

  • Speech without quotes.
  • Actions in *asterisks*
*leans against wall cooly* so like, i just casted a super strong spell at magician academy today, not gonna lie, felt badass.

SillyTavern Settings

  1. Use ChatML for the Context Template.
  2. Enable Instruct Mode.
  3. Use the Mahou preset.
  4. Recommended Additonal stopping strings: ["\n", "<|", "</"]

Method

DPO finetuned using an A100 on Google Colab.

Fine-tune a Mistral-7b model with Direct Preference Optimization - Maxime Labonne

Configuration

LoRA, model, and training settings:

# LoRA configuration
peft_config = LoraConfig(
    r=16,
    lora_alpha=16,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)
# Model to fine-tune
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True
)
model.config.use_cache = False
# Reference model
ref_model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True
)
# Training arguments
training_args = TrainingArguments(
    per_device_train_batch_size=4,
    gradient_accumulation_steps=4,
    gradient_checkpointing=True,
    learning_rate=5e-5,
    lr_scheduler_type="cosine",
    max_steps=2000,
    save_strategy="no",
    logging_steps=1,
    output_dir=new_model,
    optim="paged_adamw_32bit",
    warmup_steps=100,
    bf16=True,
    report_to="wandb",
)
# Create DPO trainer
dpo_trainer = DPOTrainer(
    model,
    ref_model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=tokenizer,
    peft_config=peft_config,
    beta=0.1,
    force_use_ref_model=True
)
# Fine-tune model with DPO
dpo_trainer.train()