nbeerbower's picture
Update README.md
64a695e verified
|
raw
history blame
3.13 kB
metadata
library_name: transformers
license: apache-2.0
base_model:
  - flammenai/flammen22X-mistral-7B
datasets:
  - nbeerbower/bible-dpo

image/png

flammen23-mistral-7B

A Mistral 7B LLM built from merging pretrained models and finetuning on nbeerbower/bible-dpo. Flammen specializes in exceptional character roleplay, creative writing, and general intelligence

Method

Finetuned using an A100 on Google Colab.

Fine-tune a Mistral-7b model with Direct Preference Optimization - Maxime Labonne

Configuration

System prompt, dataset formatting:

def chatml_format(example):

    # Format system
    system = ""
    systemMessage = "Recite the given verse from the Bible."
    system = "<|im_start|>system\n" + systemMessage + "<|im_end|>\n"

    # Format instruction
    prompt = "<|im_start|>user\nRecite " + example['citation'] + "<|im_end|>\n<|im_start|>assistant\n"

    # Format chosen answer
    chosen = example['text'] + "<|im_end|>\n"

    # Format rejected answer
    rejected = example['rejected'] + "<|im_end|>\n"

    return {
        "prompt": system + prompt,
        "chosen": chosen,
        "rejected": rejected,
    }

dataset = load_dataset("nbeerbower/bible-dpo")['train']

# Save columns
original_columns = dataset.column_names

# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"

# Format dataset
dataset = dataset.map(
    chatml_format,
    remove_columns=original_columns
)

LoRA, model, and training settings:

# LoRA configuration
peft_config = LoraConfig(
    r=16,
    lora_alpha=16,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)

# Model to fine-tune
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True
)
model.config.use_cache = False

# Reference model
ref_model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True
)

# Training arguments
training_args = TrainingArguments(
    per_device_train_batch_size=4,
    gradient_accumulation_steps=4,
    gradient_checkpointing=True,
    learning_rate=5e-5,
    lr_scheduler_type="cosine",
    max_steps=5000,
    save_strategy="no",
    logging_steps=1,
    output_dir=new_model,
    optim="paged_adamw_32bit",
    warmup_steps=100,
    bf16=True,
    report_to="wandb",
)

# Create DPO trainer
dpo_trainer = DPOTrainer(
    model,
    ref_model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=tokenizer,
    peft_config=peft_config,
    beta=0.1,
    max_prompt_length=512,
    max_length=1536,
    force_use_ref_model=True
)

# Fine-tune model with DPO
dpo_trainer.train()