tinyllama-moe-base-mix-orpo
This model is a fine-tuned version of four-two-labs/tinyllama-moe-base on the see code
dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1757
- Rewards/chosen: -0.1708
- Rewards/rejected: -0.1682
- Rewards/accuracies: 0.5003
- Rewards/margins: -0.0027
- Logps/rejected: -1.6818
- Logps/chosen: -1.7085
- Logits/rejected: -2.6114
- Logits/chosen: -2.6139
- Nll Loss: 1.0859
- Log Odds Ratio: -0.8989
- Log Odds Chosen: -0.1073
Model description
More information needed
Training and evaluation data
from datasets import load_dataset
from datasets import interleave_datasets
def format_chat_template(row):
for key in ['prompt', 'chosen', 'rejected']:
row[key] = tokenizer.apply_chat_template(row[key], tokenize=False)
return row
dataset = (
interleave_datasets([
(
interleave_datasets(
load_dataset(
'four-two-labs/orpo-dpo-mix-40k-multilang-fixed',
token=hf_token,
)
.values()
)
.select_columns(['prompt', 'chosen', 'rejected'])
),
(
load_dataset(
'four-two-labs/translations-5M-DPO',
split='train',
token=hf_token,
)
.shuffle(42)
.select(range(250_000))
.select_columns(['prompt', 'chosen', 'rejected'])
),
(
load_dataset(
'four-two-labs/ultrafeedback_binarized-fixed',
split='train_prefs',
token=hf_token,
)
.select_columns(['prompt', 'chosen', 'rejected'])
),
])
.shuffle(seed=42)
#.select(range(1000))
.map(format_chat_template, num_proc=32)
.train_test_split(test_size=0.01)
)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1835 | 0.6001 | 2270 | 1.1764 | -0.1711 | -0.1684 | 0.4976 | -0.0027 | -1.6838 | -1.7106 | -2.6416 | -2.6430 | 1.0866 | -0.8991 | -0.1073 |
1.1494 | 1.2002 | 4540 | 1.1757 | -0.1709 | -0.1682 | 0.5003 | -0.0026 | -1.6820 | -1.7085 | -2.5529 | -2.5573 | 1.0860 | -0.8988 | -0.1070 |
1.233 | 1.8003 | 6810 | 1.1757 | -0.1709 | -0.1682 | 0.4993 | -0.0027 | -1.6819 | -1.7086 | -2.5859 | -2.5892 | 1.0859 | -0.8989 | -0.1073 |
1.2344 | 2.4004 | 9080 | 1.1757 | -0.1708 | -0.1682 | 0.5003 | -0.0027 | -1.6818 | -1.7085 | -2.6114 | -2.6139 | 1.0859 | -0.8989 | -0.1073 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.1.2+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for four-two-labs/tinyllama-moe-base-mix-orpo
Base model
four-two-labs/tinyllama-moe-base