MPNet base trained on AllNLI triplets
This is a sentence-transformers model finetuned from TaylorAI/bge-micro. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: TaylorAI/bge-micro
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("fpc/bge-micro-smiles")
# Run inference
sentences = [
'(±)-cis-2-(4-methoxyphenyl)-3-acetoxy-5-[2-(dimethylamino)ethyl]-8-chloro-2,3-dihydro-1,5-benzothiazepin-4(5H)-one hydrochloride',
'Cl.COC1=CC=C(C=C1)[C@@H]1SC2=C(N(C([C@@H]1OC(C)=O)=O)CCN(C)C)C=CC(=C2)Cl',
'O[C@@H]1[C@H](O)[C@@H](Oc2nc(N3CCNCC3)nc3ccccc23)C[C@H]1O',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,210,255 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 5 tokens
- mean: 42.57 tokens
- max: 153 tokens
- min: 4 tokens
- mean: 40.02 tokens
- max: 325 tokens
- Samples:
anchor positive 4-t-butylbromobenzene
C(C)(C)(C)C1=CC=C(C=C1)Br
1-methyl-4-(morpholine-4-carbonyl)-N-(2-phenyl-[1,2,4]triazolo[1,5-a]pyridin-7-yl)-1H-pyrazole-5-carboxamide
CN1N=CC(=C1C(=O)NC1=CC=2N(C=C1)N=C(N2)C2=CC=CC=C2)C(=O)N2CCOCC2
Phthalimide
C1(C=2C(C(N1)=O)=CC=CC2)=O
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 512learning_rate
: 2e-05num_train_epochs
: 4warmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | bge-micro-test_spearman_cosine |
---|---|---|---|
0.0159 | 100 | 6.1861 | - |
0.0319 | 200 | 6.0547 | - |
0.0478 | 300 | 5.6041 | - |
0.0638 | 400 | 4.9367 | - |
0.0797 | 500 | 4.3412 | - |
0.0957 | 600 | 3.8245 | - |
0.1116 | 700 | 3.3188 | - |
0.1276 | 800 | 2.869 | - |
0.1435 | 900 | 2.5149 | - |
0.1595 | 1000 | 2.2282 | - |
0.1754 | 1100 | 2.0046 | - |
0.1914 | 1200 | 1.8032 | - |
0.2073 | 1300 | 1.6289 | - |
0.2232 | 1400 | 1.4567 | - |
0.2392 | 1500 | 1.3326 | - |
0.2551 | 1600 | 1.2127 | - |
0.2711 | 1700 | 1.0909 | - |
0.2870 | 1800 | 1.0021 | - |
0.3030 | 1900 | 0.9135 | - |
0.3189 | 2000 | 0.8378 | - |
0.3349 | 2100 | 0.7758 | - |
0.3508 | 2200 | 0.7031 | - |
0.3668 | 2300 | 0.6418 | - |
0.3827 | 2400 | 0.5965 | - |
0.3987 | 2500 | 0.5461 | - |
0.4146 | 2600 | 0.5039 | - |
0.4306 | 2700 | 0.4674 | - |
0.4465 | 2800 | 0.4339 | - |
0.4624 | 2900 | 0.4045 | - |
0.4784 | 3000 | 0.373 | - |
0.4943 | 3100 | 0.3566 | - |
0.5103 | 3200 | 0.3348 | - |
0.5262 | 3300 | 0.3215 | - |
0.5422 | 3400 | 0.302 | - |
0.5581 | 3500 | 0.2826 | - |
0.5741 | 3600 | 0.2803 | - |
0.5900 | 3700 | 0.2616 | - |
0.6060 | 3800 | 0.2554 | - |
0.6219 | 3900 | 0.234 | - |
0.6379 | 4000 | 0.2306 | - |
0.6538 | 4100 | 0.2224 | - |
0.6697 | 4200 | 0.2141 | - |
0.6857 | 4300 | 0.2117 | - |
0.7016 | 4400 | 0.204 | - |
0.7176 | 4500 | 0.198 | - |
0.7335 | 4600 | 0.1986 | - |
0.7495 | 4700 | 0.1821 | - |
0.7654 | 4800 | 0.1813 | - |
0.7814 | 4900 | 0.1741 | - |
0.7973 | 5000 | 0.1697 | - |
0.8133 | 5100 | 0.1655 | - |
0.8292 | 5200 | 0.1623 | - |
0.8452 | 5300 | 0.1593 | - |
0.8611 | 5400 | 0.1566 | - |
0.8771 | 5500 | 0.151 | - |
0.8930 | 5600 | 0.1526 | - |
0.9089 | 5700 | 0.1453 | - |
0.9249 | 5800 | 0.1448 | - |
0.9408 | 5900 | 0.1369 | - |
0.9568 | 6000 | 0.1409 | - |
0.9727 | 6100 | 0.1373 | - |
0.9887 | 6200 | 0.133 | - |
1.0046 | 6300 | 0.1269 | - |
1.0206 | 6400 | 0.1274 | - |
1.0365 | 6500 | 0.1271 | - |
1.0525 | 6600 | 0.1216 | - |
1.0684 | 6700 | 0.1176 | - |
1.0844 | 6800 | 0.1208 | - |
1.1003 | 6900 | 0.1177 | - |
1.1162 | 7000 | 0.1175 | - |
1.1322 | 7100 | 0.1109 | - |
1.1481 | 7200 | 0.1118 | - |
1.1641 | 7300 | 0.1085 | - |
1.1800 | 7400 | 0.1155 | - |
1.1960 | 7500 | 0.1079 | - |
1.2119 | 7600 | 0.1087 | - |
1.2279 | 7700 | 0.1004 | - |
1.2438 | 7800 | 0.1084 | - |
1.2598 | 7900 | 0.1089 | - |
1.2757 | 8000 | 0.1012 | - |
1.2917 | 8100 | 0.1037 | - |
1.3076 | 8200 | 0.1004 | - |
1.3236 | 8300 | 0.0979 | - |
1.3395 | 8400 | 0.1007 | - |
1.3554 | 8500 | 0.0956 | - |
1.3714 | 8600 | 0.0972 | - |
1.3873 | 8700 | 0.0947 | - |
1.4033 | 8800 | 0.0931 | - |
1.4192 | 8900 | 0.0948 | - |
1.4352 | 9000 | 0.0925 | - |
1.4511 | 9100 | 0.0933 | - |
1.4671 | 9200 | 0.0888 | - |
1.4830 | 9300 | 0.0877 | - |
1.4990 | 9400 | 0.0889 | - |
1.5149 | 9500 | 0.0895 | - |
1.5309 | 9600 | 0.0892 | - |
1.5468 | 9700 | 0.089 | - |
1.5627 | 9800 | 0.0828 | - |
1.5787 | 9900 | 0.0906 | - |
1.5946 | 10000 | 0.0893 | - |
1.6106 | 10100 | 0.0849 | - |
1.6265 | 10200 | 0.0811 | - |
1.6425 | 10300 | 0.0823 | - |
1.6584 | 10400 | 0.0806 | - |
1.6744 | 10500 | 0.0815 | - |
1.6903 | 10600 | 0.0832 | - |
1.7063 | 10700 | 0.0856 | - |
1.7222 | 10800 | 0.081 | - |
1.7382 | 10900 | 0.0831 | - |
1.7541 | 11000 | 0.0767 | - |
1.7701 | 11100 | 0.0779 | - |
1.7860 | 11200 | 0.0792 | - |
1.8019 | 11300 | 0.0771 | - |
1.8179 | 11400 | 0.0783 | - |
1.8338 | 11500 | 0.0749 | - |
1.8498 | 11600 | 0.0755 | - |
1.8657 | 11700 | 0.0778 | - |
1.8817 | 11800 | 0.0753 | - |
1.8976 | 11900 | 0.0767 | - |
1.9136 | 12000 | 0.0725 | - |
1.9295 | 12100 | 0.0744 | - |
1.9455 | 12200 | 0.0743 | - |
1.9614 | 12300 | 0.0722 | - |
1.9774 | 12400 | 0.0712 | - |
1.9933 | 12500 | 0.0709 | - |
2.0092 | 12600 | 0.0694 | - |
2.0252 | 12700 | 0.0705 | - |
2.0411 | 12800 | 0.0715 | - |
2.0571 | 12900 | 0.0705 | - |
2.0730 | 13000 | 0.0653 | - |
2.0890 | 13100 | 0.0698 | - |
2.1049 | 13200 | 0.0676 | - |
2.1209 | 13300 | 0.0684 | - |
2.1368 | 13400 | 0.0644 | - |
2.1528 | 13500 | 0.0652 | - |
2.1687 | 13600 | 0.0673 | - |
2.1847 | 13700 | 0.067 | - |
2.2006 | 13800 | 0.0645 | - |
2.2166 | 13900 | 0.0633 | - |
2.2325 | 14000 | 0.0645 | - |
2.2484 | 14100 | 0.0698 | - |
2.2644 | 14200 | 0.0655 | - |
2.2803 | 14300 | 0.0654 | - |
2.2963 | 14400 | 0.0656 | - |
2.3122 | 14500 | 0.0631 | - |
2.3282 | 14600 | 0.0628 | - |
2.3441 | 14700 | 0.0671 | - |
2.3601 | 14800 | 0.0659 | - |
2.3760 | 14900 | 0.0619 | - |
2.3920 | 15000 | 0.0618 | - |
2.4079 | 15100 | 0.0624 | - |
2.4239 | 15200 | 0.0616 | - |
2.4398 | 15300 | 0.0631 | - |
2.4557 | 15400 | 0.0639 | - |
2.4717 | 15500 | 0.0585 | - |
2.4876 | 15600 | 0.0607 | - |
2.5036 | 15700 | 0.0615 | - |
2.5195 | 15800 | 0.062 | - |
2.5355 | 15900 | 0.0621 | - |
2.5514 | 16000 | 0.0608 | - |
2.5674 | 16100 | 0.0594 | - |
2.5833 | 16200 | 0.0631 | - |
2.5993 | 16300 | 0.0635 | - |
2.6152 | 16400 | 0.06 | - |
2.6312 | 16500 | 0.0581 | - |
2.6471 | 16600 | 0.0607 | - |
2.6631 | 16700 | 0.0577 | - |
2.6790 | 16800 | 0.0592 | - |
2.6949 | 16900 | 0.0625 | - |
2.7109 | 17000 | 0.0622 | - |
2.7268 | 17100 | 0.0573 | - |
2.7428 | 17200 | 0.0613 | - |
2.7587 | 17300 | 0.0587 | - |
2.7747 | 17400 | 0.0587 | - |
2.7906 | 17500 | 0.0588 | - |
2.8066 | 17600 | 0.0568 | - |
2.8225 | 17700 | 0.0573 | - |
2.8385 | 17800 | 0.0575 | - |
2.8544 | 17900 | 0.0575 | - |
2.8704 | 18000 | 0.0582 | - |
2.8863 | 18100 | 0.0577 | - |
2.9022 | 18200 | 0.057 | - |
2.9182 | 18300 | 0.0572 | - |
2.9341 | 18400 | 0.0558 | - |
2.9501 | 18500 | 0.0578 | - |
2.9660 | 18600 | 0.0567 | - |
2.9820 | 18700 | 0.0569 | - |
2.9979 | 18800 | 0.0547 | - |
3.0139 | 18900 | 0.0542 | - |
3.0298 | 19000 | 0.0563 | - |
3.0458 | 19100 | 0.0549 | - |
3.0617 | 19200 | 0.0531 | - |
3.0777 | 19300 | 0.053 | - |
3.0936 | 19400 | 0.0557 | - |
3.1096 | 19500 | 0.0546 | - |
3.1255 | 19600 | 0.0518 | - |
3.1414 | 19700 | 0.0517 | - |
3.1574 | 19800 | 0.0528 | - |
3.1733 | 19900 | 0.0551 | - |
3.1893 | 20000 | 0.0544 | - |
3.2052 | 20100 | 0.0526 | - |
3.2212 | 20200 | 0.0494 | - |
3.2371 | 20300 | 0.0537 | - |
3.2531 | 20400 | 0.0568 | - |
3.2690 | 20500 | 0.0525 | - |
3.2850 | 20600 | 0.0566 | - |
3.3009 | 20700 | 0.0539 | - |
3.3169 | 20800 | 0.0531 | - |
3.3328 | 20900 | 0.0524 | - |
3.3487 | 21000 | 0.0543 | - |
3.3647 | 21100 | 0.0537 | - |
3.3806 | 21200 | 0.0524 | - |
3.3966 | 21300 | 0.0516 | - |
3.4125 | 21400 | 0.0537 | - |
3.4285 | 21500 | 0.0515 | - |
3.4444 | 21600 | 0.0537 | - |
3.4604 | 21700 | 0.0526 | - |
3.4763 | 21800 | 0.0508 | - |
3.4923 | 21900 | 0.0526 | - |
3.5082 | 22000 | 0.0521 | - |
3.5242 | 22100 | 0.054 | - |
3.5401 | 22200 | 0.053 | - |
3.5561 | 22300 | 0.0509 | - |
3.5720 | 22400 | 0.0526 | - |
3.5879 | 22500 | 0.0551 | - |
3.6039 | 22600 | 0.0556 | - |
3.6198 | 22700 | 0.0497 | - |
3.6358 | 22800 | 0.0515 | - |
3.6517 | 22900 | 0.0514 | - |
3.6677 | 23000 | 0.0503 | - |
3.6836 | 23100 | 0.0515 | - |
3.6996 | 23200 | 0.0553 | - |
3.7155 | 23300 | 0.0519 | - |
3.7315 | 23400 | 0.0549 | - |
3.7474 | 23500 | 0.0522 | - |
3.7634 | 23600 | 0.0526 | - |
3.7793 | 23700 | 0.0525 | - |
3.7952 | 23800 | 0.051 | - |
3.8112 | 23900 | 0.0509 | - |
3.8271 | 24000 | 0.0503 | - |
3.8431 | 24100 | 0.0524 | - |
3.8590 | 24200 | 0.0526 | - |
3.8750 | 24300 | 0.0512 | - |
3.8909 | 24400 | 0.0518 | - |
3.9069 | 24500 | 0.0521 | - |
3.9228 | 24600 | 0.0524 | - |
3.9388 | 24700 | 0.051 | - |
3.9547 | 24800 | 0.0535 | - |
3.9707 | 24900 | 0.0508 | - |
3.9866 | 25000 | 0.0514 | - |
4.0 | 25084 | - | nan |
Framework Versions
- Python: 3.10.9
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.4.1+cu124
- Accelerate: 0.33.0
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for fpc/bge-micro-smiles
Base model
TaylorAI/bge-microEvaluation results
- Pearson Cosine on bge micro testself-reportedNaN
- Spearman Cosine on bge micro testself-reportedNaN
- Pearson Manhattan on bge micro testself-reportedNaN
- Spearman Manhattan on bge micro testself-reportedNaN
- Pearson Euclidean on bge micro testself-reportedNaN
- Spearman Euclidean on bge micro testself-reportedNaN
- Pearson Dot on bge micro testself-reportedNaN
- Spearman Dot on bge micro testself-reportedNaN
- Pearson Max on bge micro testself-reportedNaN
- Spearman Max on bge micro testself-reportedNaN