frank-chieng's picture
Model card auto-generated by SimpleTuner
d18e053 verified
---
license: other
base_model: "black-forest-labs/FLUX.1-dev"
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'a breathtaking anime-style portrait of <nvzhu2>, capturing her essence with vibrant colors and expressive features'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
- text: 'a high-quality, detailed photograph of <nvzhu2> as a sous-chef, immersed in the art of culinary creation'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_2_0.png
- text: 'a lifelike and intimate portrait of <nvzhu2>, showcasing her unique personality and charm'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_3_0.png
- text: 'a cinematic, visually stunning photo of <nvzhu2>, emphasizing her dramatic and captivating presence'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_4_0.png
- text: 'an elegant and timeless portrait of <nvzhu2>, exuding grace and sophistication'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_5_0.png
- text: 'a dynamic and adventurous photo of <nvzhu2>, captured in an exciting, action-filled moment'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_6_0.png
- text: 'a mysterious and enigmatic portrait of <nvzhu2>, shrouded in shadows and intrigue'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_7_0.png
- text: 'a vintage-style portrait of <nvzhu2>, evoking the charm and nostalgia of a bygone era'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_8_0.png
- text: 'an artistic and abstract representation of <nvzhu2>, blending creativity with visual storytelling'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_9_0.png
- text: 'a futuristic and cutting-edge portrayal of <nvzhu2>, set against a backdrop of advanced technology'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_10_0.png
- text: 'an elegant and timeless portrait of nvzhu2, exuding grace and sophistication'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_11_0.png
---
# simpletuner-lora-nvzhu2
This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
The main validation prompt used during training was:
```
an elegant and timeless portrait of nvzhu2, exuding grace and sophistication
```
## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `427`
- Resolution: `1024x768`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 5
- Training steps: 3000
- Learning rate: 0.0001
- Effective batch size: 1
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: optimi-stableadamwweight_decay=1e-3
- Precision: Pure BF16
- Quantised: Yes: int8-quanto
- Xformers: Not used
- LyCORIS Config:
```json
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 16,
"apply_preset": {
"target_module": [
"FluxTransformerBlock",
"FluxSingleTransformerBlock"
],
"module_algo_map": {
"Attention": {
"factor": 16
},
"FeedForward": {
"factor": 8
}
}
}
}
```
## Datasets
### nvzhu2-dataset-1536
- Repeats: 0
- Total number of images: 88
- Total number of aspect buckets: 1
- Resolution: 2.359296 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### nvzhu2-dataset-1024
- Repeats: 0
- Total number of images: 88
- Total number of aspect buckets: 2
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### nvzhu2-dataset-512
- Repeats: 0
- Total number of images: 88
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### nvzhu2-dataset-1536-crop
- Repeats: 0
- Total number of images: 88
- Total number of aspect buckets: 1
- Resolution: 2.359296 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### nvzhu2-dataset_1024-crop
- Repeats: 0
- Total number of images: 88
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### nvzhu2-dataset_512-crop
- Repeats: 0
- Total number of images: 88
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
## Inference
```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()
prompt = "an elegant and timeless portrait of nvzhu2, exuding grace and sophistication"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=768,
guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
```