output / README.md
frankie699's picture
End of training
cbf78f9 verified
metadata
license: mit
base_model: microsoft/deberta-v2-xxlarge
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: output
    results: []

output

This model is a fine-tuned version of microsoft/deberta-v2-xxlarge on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7550
  • Accuracy: 0.6786
  • Macro F1: 0.6773

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
1.6193 0.2286 100 1.6018 0.2184 0.1357
1.305 0.4571 200 0.9285 0.591 0.5953
0.8772 0.6857 300 0.8561 0.6256 0.6250
0.8552 0.9143 400 0.8332 0.6511 0.6473
0.798 1.1429 500 0.8210 0.6641 0.6579
0.7713 1.3714 600 0.7759 0.666 0.6669
0.7758 1.6 700 0.7634 0.6667 0.6615
0.7442 1.8286 800 0.7960 0.6613 0.6590
0.752 2.0571 900 0.7715 0.667 0.6690
0.7123 2.2857 1000 0.7600 0.6696 0.6698
0.7066 2.5143 1100 0.7599 0.6701 0.6684
0.7024 2.7429 1200 0.7551 0.6757 0.6763
0.7117 2.9714 1300 0.7550 0.6786 0.6773

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.2
  • Datasets 2.19.0
  • Tokenizers 0.19.1