Overview

PEFT Weigths for Qwen/Qwen2.5-14B-Instruct. Finetuned for the task of generating Data Management Plans.

Usage:

Model loading:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel

BASE_MODEL_NAME = 'Qwen/Qwen2.5-14B-Instruct'
PEFT_MODEL_NAME = 'frnka/qwen14b-forward-peft'
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_NAME)
base_model = AutoModelForCausalLM.from_pretrained(
    BASE_MODEL_NAME,
    device_map="auto",
    torch_dtype=torch.float16,
    output_attentions=True,
    return_dict_in_generate=True,
)
model = PeftModel.from_pretrained(base_model, PEFT_MODEL_NAME).cuda()

And inference:


def message_generic():
    return (f"You are Data management plan expert. "
            f"Please generate a sentence preceding the following Data Management Plan snippet. ")


def message_specific(topic):
    return message_generic() + f"You may talk about '{topic}'"


topic_to_talk_about = "How will the data be stored?"
topic_to_talk_about_2 = "How will the data be backed up?"
context = "Some part of a DMP that we want to generate the previous sentence for."
messages = [
    {"role": "system",
     "content": f"You are Data management plan expert. "
                f"Please generate the rest of the data management plan. "
                f"You may talk about '{topic_to_talk_about}'. If the text already talks about it, "
                f"you may then move to other topics such as '{topic_to_talk_about_2}'"},
    {"role": "user", "content": context},
]

with torch.no_grad():
    tokenized = tokenizer.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        return_dict=True,
        return_tensors="pt"
    )
    input_ids = tokenized['input_ids'].cuda()
    output = model.generate(
        input_ids,
        attention_mask=tokenized['attention_mask'].cuda(),
        max_new_tokens=700,
        num_return_sequences=1,
        do_sample=True,
        temperature=1,
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.pad_token_id,
        use_cache=True,
    )
    answer_ids = output[0][len(input_ids[0]):]
    generated_text = tokenizer.decode(answer_ids, skip_special_tokens=True)
    print(context + generated_text)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for frnka/Qwen2.5-14B-Instruct-dmp-generate-forwards

Base model

Qwen/Qwen2.5-14B
Finetuned
(40)
this model

Dataset used to train frnka/Qwen2.5-14B-Instruct-dmp-generate-forwards

Collection including frnka/Qwen2.5-14B-Instruct-dmp-generate-forwards