Generated from Trainer
Eval Results

whisper-medium-pt-3000h-ct2

This model is a fine-tuned version of openai/whisper-medium on the fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba default dataset. It was converted to the CTranslate2 format. It achieves the following results on the evaluation set:

  • Loss: 0.9306
  • Wer: 0.1101

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 10.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4423 0.2 20000 0.4723 0.1633
0.4963 0.39 40000 0.4921 0.1547
0.3853 0.59 60000 0.5099 0.1470
0.37 0.79 80000 0.4753 0.1439
0.3615 0.98 100000 0.5074 0.1386
0.2394 1.18 120000 0.4858 0.1341
0.227 1.38 140000 0.5758 0.1323
0.2461 1.57 160000 0.5067 0.1322
0.2078 1.77 180000 0.5087 0.1291
0.2138 1.97 200000 0.5201 0.1273
0.1188 2.16 220000 0.6359 0.1265
0.1009 2.36 240000 0.6229 0.1253
0.1394 2.56 260000 0.5734 0.1231
0.1383 2.75 280000 0.5914 0.1213
0.1332 2.95 300000 0.6174 0.1212
0.0634 3.15 320000 0.6461 0.1190
0.0667 3.34 340000 0.6330 0.1211
0.0546 3.54 360000 0.6927 0.1190
0.1029 3.74 380000 0.6777 0.1184
0.0664 3.93 400000 0.6367 0.1161
0.0665 4.13 420000 0.7467 0.1171
0.0695 4.33 440000 0.7332 0.1164
0.0708 4.52 460000 0.7141 0.1171
0.0695 4.72 480000 0.6869 0.1169
0.0758 4.92 500000 0.7360 0.1153
0.061 5.11 520000 0.7594 0.1161
0.0804 5.31 540000 0.7640 0.1158
0.0963 5.51 560000 0.7848 0.1157
0.0815 5.7 580000 0.7635 0.1145
0.0794 5.9 600000 0.7566 0.1134
0.0907 6.1 620000 0.8152 0.1147
0.0664 6.29 640000 0.8405 0.1123
0.0654 6.49 660000 0.8278 0.1119
0.0652 6.69 680000 0.8267 0.1134
0.1043 6.88 700000 0.8254 0.1122
0.0383 7.08 720000 0.8719 0.1122
0.0461 7.28 740000 0.8640 0.1130
0.0791 7.47 760000 0.8990 0.1122
0.0587 7.67 780000 0.9107 0.1122
0.0578 7.87 800000 0.9060 0.1124
0.0218 8.06 820000 0.8845 0.1111
0.0125 8.26 840000 0.9072 0.1112
0.0172 8.46 860000 0.8899 0.1107
0.0204 8.65 880000 0.9149 0.1108
0.0145 8.85 900000 0.9097 0.1103
0.0146 9.05 920000 0.9084 0.1107
0.0166 9.24 940000 0.9053 0.1103
0.0177 9.44 960000 0.9193 0.1100
0.0157 9.64 980000 0.9212 0.1101
0.0096 9.83 1000000 0.9313 0.1103

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.1.dev0
  • Tokenizers 0.15.0
Downloads last month
3
Inference API
Unable to determine this model's library. Check the docs .

Model tree for fsicoli/whisper-medium-pt-3000h-ct2

Finetuned
(549)
this model

Evaluation results

  • Wer on fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba default
    self-reported
    0.110