SetFit with BAAI/bge-small-en-v1.5 on Health Information Needs
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
- Language: en
- License: apache-2.0
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1 |
|
0 |
|
Evaluation
Metrics
Label | 0 | 1 | Accuracy | Macro Avg | Weighted Avg |
---|---|---|---|---|---|
all | {'precision': 0.37465309898242366, 'recall': 0.989413680781759, 'f1-score': 0.5435025721315142, 'support': 1228.0} | {'precision': 0.9940962761126249, 'recall': 0.5190894000474271, 'f1-score': 0.6820377005764138, 'support': 4217.0} | 0.6252 | {'precision': 0.6843746875475243, 'recall': 0.7542515404145931, 'f1-score': 0.6127701363539639, 'support': 5445.0} | {'precision': 0.8543944907102582, 'recall': 0.6251606978879706, 'f1-score': 0.6507941491107871, 'support': 5445.0} |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("fuhakiem/hin-v001-trainer")
# Run inference
preds = model("Referees")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 7.3 | 15 |
Label | Training Sample Count |
---|---|
0 | 5 |
1 | 5 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.5 | 1 | 0.1957 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.42.2
- PyTorch: 2.5.1+cu124
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for fuhakiem/hin-v001-trainer
Base model
BAAI/bge-small-en-v1.5Evaluation results
- 0 on Health Information Needstest set self-reported[object Object]
- 1 on Health Information Needstest set self-reported[object Object]
- Accuracy on Health Information Needstest set self-reported0.625
- Macro Avg on Health Information Needstest set self-reported[object Object]
- Weighted Avg on Health Information Needstest set self-reported[object Object]