File size: 8,113 Bytes
bd190f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---

license: apache-2.0
base_model: asapp/sew-d-tiny-100k-ft-ls100h
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sewd-classifier-aug-ref
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sewd-classifier-aug-ref

This model is a fine-tuned version of [asapp/sew-d-tiny-100k-ft-ls100h](https://huggingface.co/asapp/sew-d-tiny-100k-ft-ls100h) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2210
- Accuracy: 0.6402
- Precision: 0.6291
- Recall: 0.6402
- F1: 0.6137
- Binary: 0.7478

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |

|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|

| No log        | 0.13  | 50   | 4.3839          | 0.0337   | 0.0029    | 0.0337 | 0.0052 | 0.2004 |

| No log        | 0.27  | 100  | 4.1179          | 0.0687   | 0.0353    | 0.0687 | 0.0281 | 0.3295 |

| No log        | 0.4   | 150  | 3.8682          | 0.0889   | 0.0335    | 0.0889 | 0.0338 | 0.3523 |

| No log        | 0.54  | 200  | 3.6594          | 0.0997   | 0.0311    | 0.0997 | 0.0366 | 0.3635 |

| No log        | 0.67  | 250  | 3.5084          | 0.1280   | 0.0534    | 0.1280 | 0.0494 | 0.3838 |

| No log        | 0.81  | 300  | 3.3946          | 0.1469   | 0.0476    | 0.1469 | 0.0628 | 0.3964 |

| No log        | 0.94  | 350  | 3.2570          | 0.1604   | 0.0699    | 0.1604 | 0.0830 | 0.4082 |

| 3.9151        | 1.08  | 400  | 3.1540          | 0.1806   | 0.0844    | 0.1806 | 0.0987 | 0.4224 |

| 3.9151        | 1.21  | 450  | 3.0449          | 0.1846   | 0.1000    | 0.1846 | 0.1005 | 0.4260 |

| 3.9151        | 1.35  | 500  | 2.9543          | 0.2237   | 0.1403    | 0.2237 | 0.1376 | 0.4534 |

| 3.9151        | 1.48  | 550  | 2.8691          | 0.2507   | 0.1621    | 0.2507 | 0.1606 | 0.4706 |

| 3.9151        | 1.62  | 600  | 2.7812          | 0.2493   | 0.1520    | 0.2493 | 0.1592 | 0.4718 |

| 3.9151        | 1.75  | 650  | 2.6598          | 0.2871   | 0.1855    | 0.2871 | 0.1856 | 0.4981 |

| 3.9151        | 1.89  | 700  | 2.6099          | 0.2951   | 0.2123    | 0.2951 | 0.2019 | 0.5047 |

| 3.1406        | 2.02  | 750  | 2.5039          | 0.3235   | 0.2106    | 0.3235 | 0.2230 | 0.5236 |

| 3.1406        | 2.16  | 800  | 2.4359          | 0.3383   | 0.2454    | 0.3383 | 0.2501 | 0.5358 |

| 3.1406        | 2.29  | 850  | 2.3869          | 0.3154   | 0.2329    | 0.3154 | 0.2324 | 0.5179 |

| 3.1406        | 2.43  | 900  | 2.3144          | 0.3612   | 0.2937    | 0.3612 | 0.2798 | 0.5513 |

| 3.1406        | 2.56  | 950  | 2.2470          | 0.3720   | 0.3122    | 0.3720 | 0.2908 | 0.5584 |

| 3.1406        | 2.7   | 1000 | 2.1944          | 0.3774   | 0.3099    | 0.3774 | 0.2992 | 0.5632 |

| 3.1406        | 2.83  | 1050 | 2.1421          | 0.4030   | 0.3250    | 0.4030 | 0.3226 | 0.5819 |

| 3.1406        | 2.97  | 1100 | 2.0630          | 0.4137   | 0.3442    | 0.4137 | 0.3336 | 0.5899 |

| 2.6974        | 3.1   | 1150 | 2.0115          | 0.4245   | 0.3679    | 0.4245 | 0.3510 | 0.5974 |

| 2.6974        | 3.24  | 1200 | 1.9716          | 0.4434   | 0.3964    | 0.4434 | 0.3729 | 0.6093 |

| 2.6974        | 3.37  | 1250 | 1.9255          | 0.4488   | 0.3972    | 0.4488 | 0.3883 | 0.6150 |

| 2.6974        | 3.51  | 1300 | 1.8715          | 0.4623   | 0.4112    | 0.4623 | 0.3969 | 0.6228 |

| 2.6974        | 3.64  | 1350 | 1.8223          | 0.4825   | 0.4534    | 0.4825 | 0.4222 | 0.6369 |

| 2.6974        | 3.78  | 1400 | 1.7951          | 0.5013   | 0.4728    | 0.5013 | 0.4500 | 0.6511 |

| 2.6974        | 3.91  | 1450 | 1.7427          | 0.5270   | 0.4855    | 0.5270 | 0.4804 | 0.6686 |

| 2.3963        | 4.05  | 1500 | 1.7319          | 0.5      | 0.4618    | 0.5    | 0.4452 | 0.6493 |

| 2.3963        | 4.18  | 1550 | 1.7098          | 0.4960   | 0.4588    | 0.4960 | 0.4454 | 0.6473 |

| 2.3963        | 4.32  | 1600 | 1.6518          | 0.5310   | 0.5051    | 0.5310 | 0.4855 | 0.6709 |

| 2.3963        | 4.45  | 1650 | 1.6535          | 0.5067   | 0.4838    | 0.5067 | 0.4552 | 0.6539 |

| 2.3963        | 4.59  | 1700 | 1.6011          | 0.5539   | 0.5106    | 0.5539 | 0.5061 | 0.6865 |

| 2.3963        | 4.72  | 1750 | 1.5894          | 0.5404   | 0.4940    | 0.5404 | 0.4923 | 0.6767 |

| 2.3963        | 4.86  | 1800 | 1.5580          | 0.5660   | 0.5371    | 0.5660 | 0.5285 | 0.6964 |

| 2.3963        | 4.99  | 1850 | 1.5375          | 0.5431   | 0.5032    | 0.5431 | 0.4968 | 0.6803 |

| 2.1926        | 5.12  | 1900 | 1.5166          | 0.5620   | 0.5237    | 0.5620 | 0.5193 | 0.6941 |

| 2.1926        | 5.26  | 1950 | 1.5168          | 0.5526   | 0.5198    | 0.5526 | 0.5085 | 0.6860 |

| 2.1926        | 5.39  | 2000 | 1.4773          | 0.5836   | 0.5615    | 0.5836 | 0.5455 | 0.7073 |

| 2.1926        | 5.53  | 2050 | 1.4488          | 0.5782   | 0.5564    | 0.5782 | 0.5396 | 0.7054 |

| 2.1926        | 5.66  | 2100 | 1.4335          | 0.5916   | 0.5691    | 0.5916 | 0.5560 | 0.7143 |

| 2.1926        | 5.8   | 2150 | 1.4078          | 0.5957   | 0.5782    | 0.5957 | 0.5641 | 0.7177 |

| 2.1926        | 5.93  | 2200 | 1.4092          | 0.5863   | 0.5691    | 0.5863 | 0.5506 | 0.7105 |

| 2.0446        | 6.07  | 2250 | 1.3942          | 0.5755   | 0.5405    | 0.5755 | 0.5334 | 0.7026 |

| 2.0446        | 6.2   | 2300 | 1.3828          | 0.5930   | 0.5776    | 0.5930 | 0.5613 | 0.7148 |

| 2.0446        | 6.34  | 2350 | 1.3625          | 0.6065   | 0.5886    | 0.6065 | 0.5688 | 0.7247 |

| 2.0446        | 6.47  | 2400 | 1.3444          | 0.6119   | 0.6008    | 0.6119 | 0.5754 | 0.7284 |

| 2.0446        | 6.61  | 2450 | 1.3088          | 0.6267   | 0.6134    | 0.6267 | 0.5914 | 0.7388 |

| 2.0446        | 6.74  | 2500 | 1.3183          | 0.6038   | 0.5869    | 0.6038 | 0.5729 | 0.7228 |

| 2.0446        | 6.88  | 2550 | 1.3000          | 0.6173   | 0.5886    | 0.6173 | 0.5810 | 0.7322 |

| 1.9441        | 7.01  | 2600 | 1.2930          | 0.6213   | 0.6048    | 0.6213 | 0.5900 | 0.7341 |

| 1.9441        | 7.15  | 2650 | 1.2757          | 0.6226   | 0.6097    | 0.6226 | 0.5959 | 0.7361 |

| 1.9441        | 7.28  | 2700 | 1.2787          | 0.6226   | 0.6091    | 0.6226 | 0.5963 | 0.7361 |

| 1.9441        | 7.42  | 2750 | 1.2566          | 0.6240   | 0.6204    | 0.6240 | 0.5983 | 0.7375 |

| 1.9441        | 7.55  | 2800 | 1.2549          | 0.6253   | 0.6055    | 0.6253 | 0.5970 | 0.7380 |

| 1.9441        | 7.69  | 2850 | 1.2396          | 0.6240   | 0.6255    | 0.6240 | 0.5954 | 0.7371 |

| 1.9441        | 7.82  | 2900 | 1.2400          | 0.6388   | 0.6361    | 0.6388 | 0.6128 | 0.7478 |

| 1.9441        | 7.96  | 2950 | 1.2369          | 0.6294   | 0.6188    | 0.6294 | 0.5996 | 0.7407 |

| 1.8636        | 8.09  | 3000 | 1.2235          | 0.6375   | 0.6363    | 0.6375 | 0.6151 | 0.7460 |

| 1.8636        | 8.23  | 3050 | 1.2178          | 0.6456   | 0.6415    | 0.6456 | 0.6196 | 0.7520 |

| 1.8636        | 8.36  | 3100 | 1.2093          | 0.6402   | 0.6346    | 0.6402 | 0.6149 | 0.7482 |

| 1.8636        | 8.5   | 3150 | 1.2210          | 0.6402   | 0.6291    | 0.6402 | 0.6137 | 0.7478 |





### Framework versions



- Transformers 4.38.2

- Pytorch 2.3.0

- Datasets 2.19.1

- Tokenizers 0.15.1