mdeberta-semeval25_maxf1_fold1
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 8.5217
- Precision Samples: 0.1404
- Recall Samples: 0.5371
- F1 Samples: 0.2043
- Precision Macro: 0.8438
- Recall Macro: 0.3676
- F1 Macro: 0.2575
- Precision Micro: 0.1226
- Recall Micro: 0.4537
- F1 Micro: 0.1930
- Precision Weighted: 0.5698
- Recall Weighted: 0.4537
- F1 Weighted: 0.1212
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10.7552 | 1.0 | 19 | 9.5226 | 0.2192 | 0.1918 | 0.1918 | 0.9911 | 0.2330 | 0.2259 | 0.1972 | 0.0864 | 0.1202 | 0.9281 | 0.0864 | 0.0293 |
10.2369 | 2.0 | 38 | 9.1991 | 0.1318 | 0.2999 | 0.1696 | 0.9613 | 0.2632 | 0.2322 | 0.1322 | 0.2130 | 0.1631 | 0.8070 | 0.2130 | 0.0556 |
9.6485 | 3.0 | 57 | 9.0218 | 0.1219 | 0.3387 | 0.1662 | 0.9509 | 0.2718 | 0.2336 | 0.1204 | 0.2438 | 0.1612 | 0.7695 | 0.2438 | 0.0604 |
9.9662 | 4.0 | 76 | 8.9125 | 0.1285 | 0.4210 | 0.1855 | 0.9261 | 0.3017 | 0.2455 | 0.1258 | 0.3210 | 0.1807 | 0.7150 | 0.3210 | 0.0846 |
9.5974 | 5.0 | 95 | 8.8310 | 0.1226 | 0.4650 | 0.1828 | 0.8763 | 0.3250 | 0.2516 | 0.1175 | 0.3642 | 0.1777 | 0.6009 | 0.3642 | 0.0984 |
9.5764 | 6.0 | 114 | 8.7264 | 0.1253 | 0.5034 | 0.1899 | 0.8717 | 0.3422 | 0.2499 | 0.1171 | 0.4136 | 0.1826 | 0.5957 | 0.4136 | 0.1009 |
9.1661 | 7.0 | 133 | 8.6379 | 0.1221 | 0.5216 | 0.1855 | 0.8615 | 0.3508 | 0.2516 | 0.1139 | 0.4290 | 0.1801 | 0.5821 | 0.4290 | 0.1045 |
9.3042 | 8.0 | 152 | 8.5834 | 0.1280 | 0.5308 | 0.1932 | 0.8429 | 0.3630 | 0.2556 | 0.1179 | 0.4475 | 0.1866 | 0.5653 | 0.4475 | 0.1137 |
9.2159 | 9.0 | 171 | 8.5092 | 0.1362 | 0.5348 | 0.2020 | 0.8323 | 0.3654 | 0.2574 | 0.1233 | 0.4506 | 0.1936 | 0.5553 | 0.4506 | 0.1190 |
8.8876 | 10.0 | 190 | 8.5217 | 0.1404 | 0.5371 | 0.2043 | 0.8438 | 0.3676 | 0.2575 | 0.1226 | 0.4537 | 0.1930 | 0.5698 | 0.4537 | 0.1212 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 165
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for g-assismoraes/mdeberta-semeval25_maxf1_fold1
Base model
microsoft/mdeberta-v3-base