mdeberta-semeval25_thresh05_fold4
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 9.5086
- Precision Samples: 0.1232
- Recall Samples: 0.6805
- F1 Samples: 0.1926
- Precision Macro: 0.7047
- Recall Macro: 0.4909
- F1 Macro: 0.2967
- Precision Micro: 0.1117
- Recall Micro: 0.6056
- F1 Micro: 0.1887
- Precision Weighted: 0.3714
- Recall Weighted: 0.6056
- F1 Weighted: 0.1569
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10.3744 | 1.0 | 19 | 10.7629 | 0.1828 | 0.2343 | 0.1841 | 0.9818 | 0.2537 | 0.2400 | 0.1818 | 0.1333 | 0.1538 | 0.8819 | 0.1333 | 0.0439 |
10.0969 | 2.0 | 38 | 10.4159 | 0.1231 | 0.3680 | 0.1689 | 0.9209 | 0.2950 | 0.2486 | 0.1192 | 0.2556 | 0.1625 | 0.7180 | 0.2556 | 0.0689 |
9.7498 | 3.0 | 57 | 10.2297 | 0.1092 | 0.4790 | 0.1654 | 0.8840 | 0.3444 | 0.2605 | 0.1095 | 0.3861 | 0.1707 | 0.6254 | 0.3861 | 0.0985 |
9.5369 | 4.0 | 76 | 10.0889 | 0.1057 | 0.4884 | 0.1612 | 0.8183 | 0.3568 | 0.2616 | 0.1044 | 0.4028 | 0.1658 | 0.5387 | 0.4028 | 0.0963 |
9.4609 | 5.0 | 95 | 9.8987 | 0.1214 | 0.5891 | 0.1864 | 0.7782 | 0.4130 | 0.2806 | 0.1131 | 0.5028 | 0.1847 | 0.4659 | 0.5028 | 0.1323 |
8.9672 | 6.0 | 114 | 9.7571 | 0.1206 | 0.6236 | 0.1885 | 0.7592 | 0.4478 | 0.2900 | 0.1114 | 0.5528 | 0.1854 | 0.4382 | 0.5528 | 0.1464 |
8.7597 | 7.0 | 133 | 9.6573 | 0.1245 | 0.6351 | 0.1916 | 0.7128 | 0.4550 | 0.2900 | 0.1114 | 0.5583 | 0.1858 | 0.3724 | 0.5583 | 0.1470 |
8.2651 | 8.0 | 152 | 9.5744 | 0.1248 | 0.6639 | 0.1936 | 0.7052 | 0.4777 | 0.2964 | 0.1122 | 0.5889 | 0.1884 | 0.3682 | 0.5889 | 0.1526 |
8.755 | 9.0 | 171 | 9.5269 | 0.1246 | 0.6746 | 0.1945 | 0.6937 | 0.4909 | 0.2965 | 0.1134 | 0.6056 | 0.1910 | 0.3584 | 0.6056 | 0.1578 |
8.5311 | 10.0 | 190 | 9.5086 | 0.1232 | 0.6805 | 0.1926 | 0.7047 | 0.4909 | 0.2967 | 0.1117 | 0.6056 | 0.1887 | 0.3714 | 0.6056 | 0.1569 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 160
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for g-assismoraes/mdeberta-semeval25_thresh05_fold4
Base model
microsoft/mdeberta-v3-base