Music Genre Classification Model ๐ถ
This model classifies music genres based on audio signals (.wav). It was fine-tuned on the model Wav2Vec2 and using the datasets music_genres_small.
You can find a GitHub repository with an interface hosted by a Flask API to test the model: music-classifier repository
Metrics
- Validation Accuracy: 75%
- F1 Score: 74%
- Validation Loss: 0.77
Example Usage
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
import librosa
import torch
# Genre mapping corrected to a dictionary
genre_mapping = {
0: "Electronic",
1: "Rock",
2: "Punk",
3: "Experimental",
4: "Hip-Hop",
5: "Folk",
6: "Chiptune / Glitch",
7: "Instrumental",
8: "Pop",
9: "International",
}
model = Wav2Vec2ForSequenceClassification.from_pretrained("gastonduault/music-classifier")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/wav2vec2-large")
# Function for preprocessing audio for prediction
def preprocess_audio(audio_path):
audio_array, sampling_rate = librosa.load(audio_path, sr=16000)
return feature_extractor(audio_array, sampling_rate=16000, return_tensors="pt", padding=True)
# Path to your audio file
audio_path = "./Nirvana - Come As You Are.wav"
# Preprocess audio
inputs = preprocess_audio(audio_path)
# Predict
with torch.no_grad():
logits = model(**inputs).logits
predicted_class = torch.argmax(logits, dim=-1).item()
# Output the result
print(f"song analized:{audio_path}")
print(f"Predicted genre: {genre_mapping[predicted_class]}")
- Downloads last month
- 443
Model tree for gastonduault/music-classifier
Base model
facebook/wav2vec2-large