Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/CodeLlama-13b-hf-flash
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 9ff4e3b24bf3b2a4_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/9ff4e3b24bf3b2a4_train_data.json
  type:
    field_input: sentence1
    field_instruction: phrase1
    field_output: sentence2
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 256
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: gavrilstep/f6ee8268-328e-4091-89fe-c4ea025edf57
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 75GiB
max_steps: 40
micro_batch_size: 2
mlflow_experiment_name: /tmp/9ff4e3b24bf3b2a4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 05245b1d-e8ff-44bb-a139-f31fd23d5a4a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 05245b1d-e8ff-44bb-a139-f31fd23d5a4a
warmup_steps: 10
weight_decay: 0.01
xformers_attention: true

f6ee8268-328e-4091-89fe-c4ea025edf57

This model is a fine-tuned version of NousResearch/CodeLlama-13b-hf-flash on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5832

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 40

Training results

Training Loss Epoch Step Validation Loss
No log 0.0011 1 4.9641
19.4687 0.0057 5 4.7598
17.5206 0.0114 10 3.6211
13.0971 0.0171 15 2.9807
12.3068 0.0229 20 2.7872
10.8472 0.0286 25 2.6790
10.0333 0.0343 30 2.6146
11.2114 0.0400 35 2.5870
10.6765 0.0457 40 2.5832

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
6
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for gavrilstep/f6ee8268-328e-4091-89fe-c4ea025edf57

Adapter
(140)
this model