Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Meta-Llama-3.1-8B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- format: custom
  path: /workspace/input_data/493017a986eb077b_train_data.json
  type:
    field_input: context
    field_instruction: question
    field_output: rendered_output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: 55
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 5
gradient_checkpointing: true
group_by_length: false
hub_model_id: gavrilstep/cae2a064-2666-4123-b0af-8af64ad8ef49
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 75GiB
max_steps: 95
micro_batch_size: 2
mlflow_experiment_name: /tmp/493017a986eb077b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 80
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: fd933e8c-64ad-4770-835f-28593c0c307b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: fd933e8c-64ad-4770-835f-28593c0c307b
warmup_steps: 50
weight_decay: 0.0
xformers_attention: false

f98ee823-c05e-4881-a8ef-cd639e5dd554

This model is a fine-tuned version of unsloth/Meta-Llama-3.1-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 5
  • total_train_batch_size: 10
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • training_steps: 95

Training results

Training Loss Epoch Step Validation Loss
No log 0.0001 1 nan
0.0 0.0081 55 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for gavrilstep/f98ee823-c05e-4881-a8ef-cd639e5dd554