swin-base-patch4-window7-224-finetuned-piid

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6630
  • Accuracy: 0.8128

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1815 0.98 20 1.0441 0.5251
0.6548 2.0 41 0.8150 0.6393
0.6083 2.98 61 0.6395 0.6986
0.4925 4.0 82 0.6273 0.6804
0.4448 4.98 102 0.4812 0.8174
0.3387 6.0 123 0.5868 0.7945
0.2622 6.98 143 0.7868 0.7260
0.2656 8.0 164 0.4432 0.8128
0.2259 8.98 184 0.6553 0.7489
0.1997 10.0 205 0.5143 0.7854
0.1892 10.98 225 0.5657 0.7945
0.1522 12.0 246 0.7339 0.7580
0.1309 12.98 266 0.6064 0.8174
0.1482 14.0 287 0.5875 0.8128
0.1459 14.98 307 0.6443 0.7900
0.1224 16.0 328 0.6521 0.8037
0.0533 16.98 348 0.5915 0.8493
0.1133 18.0 369 0.6152 0.8265
0.0923 18.98 389 0.6819 0.7854
0.086 19.51 400 0.6630 0.8128

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
5
Safetensors
Model size
86.8M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gcperk20/swin-base-patch4-window7-224-finetuned-piid

Finetuned
(54)
this model

Evaluation results