SetFit with deutsche-telekom/gbert-large-paraphrase-cosine

This is a SetFit model that can be used for Text Classification. This SetFit model uses deutsche-telekom/gbert-large-paraphrase-cosine as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1
  • 'Deutschland ist ein gastfreundliches und weltoffenes Land.'
  • 'Aber auch in der Polizei und Justiz muss sich einiges ändern.'
  • 'Die FDP sucht das Gespräch mit der evangelischen und katholischen Kirche ebenso wie mit dem Judentum, dem Islam und allen anderen Religionsgemeinschaften.'
0
  • 'Wir wollen eine Integrationsoffensive.'
  • 'Kenntnisse der deutschen Sprache sind eine unverzichtbare Voraussetzung zur Beseitigung sozialer Benachteiligungen und zum Erreichen schulischer, beruflicher und gesellschaftlicher Erfolge.'
  • 'Wir erwarten von Zuwandernden, dass sie die deutsche Sprache erlernen.'

Evaluation

Metrics

Label F1 Precision Recall
all 0.8564 0.8585 0.8548

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("gehaustein/gbert-large-stance-multiculturalism")
# Run inference
preds = model("für Integration")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 14.6336 42
Label Training Sample Count
0 128
1 366

Training Hyperparameters

  • batch_size: (128, 128)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (1e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0008 1 0.3283 -
0.0424 50 0.2401 0.234
0.0848 100 0.0852 0.202
0.1272 150 0.0054 0.2493
0.1696 200 0.001 0.2502
0.2120 250 0.0002 0.2513
0.2545 300 0.0012 0.2496
0.2969 350 0.0046 0.2485
0.3393 400 0.0056 0.2538
0.3817 450 0.0001 0.2543
0.4241 500 0.0001 0.2443
0.4665 550 0.0001 0.2472
0.5089 600 0.0051 0.2655
0.5513 650 0.0002 0.2646
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.11
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.1
  • PyTorch: 2.5.1+cu121
  • Datasets: 2.14.4
  • Tokenizers: 0.21.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
2
Safetensors
Model size
336M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for gehaustein/gbert-large-stance-multiculturalism

Finetuned
(2)
this model

Evaluation results