distill-vit

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4751
  • Accuracy: 0.7656

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8986 1.0 65 0.7788 0.4286
0.8556 2.0 130 0.9774 0.4812
0.7581 3.0 195 0.6150 0.6541
0.6434 4.0 260 0.6455 0.6090
0.609 5.0 325 0.5329 0.7143
0.5503 6.0 390 0.5829 0.6466
0.5492 7.0 455 0.6716 0.6917
0.504 8.0 520 0.5342 0.6917
0.4966 9.0 585 0.5668 0.6617
0.4978 10.0 650 0.5347 0.6767
0.4535 11.0 715 0.5580 0.6090
0.4415 12.0 780 0.5085 0.7444
0.4308 13.0 845 0.5131 0.7068
0.4247 14.0 910 0.4808 0.7068
0.4307 15.0 975 0.5542 0.6917
0.4165 16.0 1040 0.5410 0.6992
0.3975 17.0 1105 0.5944 0.6015
0.3942 18.0 1170 0.4730 0.6917
0.3932 19.0 1235 0.4806 0.6917
0.3437 20.0 1300 0.5341 0.6842
0.3628 21.0 1365 0.5836 0.6692
0.3483 22.0 1430 0.6234 0.6316
0.3318 23.0 1495 0.4950 0.7143
0.3189 24.0 1560 0.4590 0.7068
0.3243 25.0 1625 0.5789 0.6692
0.3169 26.0 1690 0.5702 0.7218
0.3031 27.0 1755 0.4415 0.7519
0.2928 28.0 1820 0.4680 0.7368
0.3117 29.0 1885 0.5384 0.6842
0.3127 30.0 1950 0.5148 0.6767

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.2.1+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
2.26M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.