trOCR-final / README.md
gg4ever's picture
Update README.md
2fc9213
metadata
license: apache-2.0
language:
  - ko
metrics:
  - cer
  - wer
pipeline_tag: image-to-text

trOCR-final

fine-tuned for VisionEncoderDecoderModel(encoder , decoder) encoder = 'facebook/deit-base-distilled-patch16-384' decoder = 'klue/roberta-base'

How to Get Started with the Model

from transformers import VisionEncoderDecoderModel,AutoTokenizer, TrOCRProcessor
import torch
from PIL import Image


device = torch.device('cuda') # change 'cuda' if you need.

image_path='(your image path)'
image = Image.open(image_path)
#model can be .jpg or .png
#hugging face download: https://huggingface.co/gg4ever/trOCR-final

processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
trocr_model = "gg4ever/trOCR-final"
model = VisionEncoderDecoderModel.from_pretrained(trocr_model).to(device)
tokenizer = AutoTokenizer.from_pretrained(trocr_model)

pixel_values = (processor(image, return_tensors="pt").pixel_values).to(device)
generated_ids = model.generate(pixel_values)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(generated_text)

Training Details

Training Data

1M words generated by TextRecognitionDataGenerator(trdg) : https://github.com/Belval/TextRecognitionDataGenerator/blob/master/trdg/run.py

1.1M words from AI-hub OCR words dataset : https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&dataSetSn=81

Training Hyperparameters

hyperparameters values
predict_with_generate True
evaluation_strategy "steps"
per_device_train_batch_size 32
per_device_eval_batch_size 32
num_train_epochs 2
fp16 True
learning_rate 4e-5
eval_stept 10000
warmup_steps 20000
weight_decay 0.01