|
--- |
|
base_model: rtzr/ko-gemma-2-9b-it |
|
library_name: peft |
|
license: gemma |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: gemma9_on_korean_summary_events |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gemma9_on_korean_summary_events |
|
|
|
This model is a fine-tuned version of [rtzr/ko-gemma-2-9b-it](https://huggingface.co/rtzr/ko-gemma-2-9b-it) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4183 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 5 |
|
- total_train_batch_size: 10 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- training_steps: 400 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.5952 | 0.1316 | 20 | 1.0820 | |
|
| 0.9103 | 0.2632 | 40 | 0.7513 | |
|
| 0.7022 | 0.3947 | 60 | 0.5833 | |
|
| 0.5149 | 0.5263 | 80 | 0.4630 | |
|
| 0.4837 | 0.6579 | 100 | 0.4376 | |
|
| 0.449 | 0.7895 | 120 | 0.4213 | |
|
| 0.431 | 0.9211 | 140 | 0.4080 | |
|
| 0.3811 | 1.0526 | 160 | 0.4000 | |
|
| 0.3227 | 1.1842 | 180 | 0.3964 | |
|
| 0.283 | 1.3158 | 200 | 0.3974 | |
|
| 0.2984 | 1.4474 | 220 | 0.3993 | |
|
| 0.3102 | 1.5789 | 240 | 0.3851 | |
|
| 0.3045 | 1.7105 | 260 | 0.3847 | |
|
| 0.3034 | 1.8421 | 280 | 0.3851 | |
|
| 0.2779 | 1.9737 | 300 | 0.3793 | |
|
| 0.2191 | 2.1053 | 320 | 0.3991 | |
|
| 0.1971 | 2.2368 | 340 | 0.4157 | |
|
| 0.1908 | 2.3684 | 360 | 0.4209 | |
|
| 0.1766 | 2.5 | 380 | 0.4190 | |
|
| 0.1749 | 2.6316 | 400 | 0.4183 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.43.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |