metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:11113
- loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
- source_sentence: Фэнүүддээ сайхан мэдээг дуулгажээ
sentences:
- Фэнүүддээ муу мэдээг дуулгажээ
- Жүжгийг 14.00 болон 16.00 цагаас тоглоно.
- Киноны дараа хэлэлцүүлэг болно.
- source_sentence: Фрида 22 насандаа Диего Риверагийн эхнэр болжээ
sentences:
- >-
Хүрэл металлын найрлагад олон төрлийн элементүүд ордог бөгөөд цэвэр
хүрлийг гарган авдаг
- “Жонон” хамтлаг олон улсын хэмжээнд тоглолт хийхээр төлөвлөж байна.
- Тэдний гэр бүлийн амьдрал буцалж байв.
- source_sentence: Тоглолтыг ССАЖЯ-ны дэмжлэгтэй зохион байгуулжээ
sentences:
- Тоглолт аравдугаар сарын 26-нд болно.
- Цомогт мал аж ахуйн сэдэвтэй дуунууд багтсан
- Тоглолт өвөрмөц тайз, онцгой хөтөлбөртэй
- source_sentence: '"TJ" энтертайнменттэй хамтран ажиллаж байна'
sentences:
- Тодорхой хэмжээгээр урлагтайгаа л байна
- “Алтан хуур” наадмын зохион байгуулагчид мэдээлэл хийлээ
- Тэд хамтран podcast хийж байна
- source_sentence: дөнгөж арван настайдаа олгойны хагалгаанд орж байсан
sentences:
- >-
Түүнээс би монгол эрчүүд ийм, тийм гэж боддог учраас хань, нөхрөөрөө
сонгохгүй байгаа юм биш
- '"Домог" чуулгын тоглолт Монгол иргэдэд зориулагджээ'
- >-
Энэ мэтчилэн болсон болоогүй өвчин тусдаг нэг тийм л хүүхэд байсан юм
шиг байгаа юм.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.9672191293060537
name: Pearson Cosine
- type: spearman_cosine
value: 0.9652101071464687
name: Spearman Cosine
SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("gmunkhtur/paraphrase-multilingual-minilm-l12-v2-mn")
# Run inference
sentences = [
'дөнгөж арван настайдаа олгойны хагалгаанд орж байсан',
'Энэ мэтчилэн болсон болоогүй өвчин тусдаг нэг тийм л хүүхэд байсан юм шиг байгаа юм.',
'"Домог" чуулгын тоглолт Монгол иргэдэд зориулагджээ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9672 |
spearman_cosine | 0.9652 |
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 11,113 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 19.59 tokens
- max: 116 tokens
- min: 3 tokens
- mean: 19.86 tokens
- max: 104 tokens
- min: -0.07
- mean: 0.49
- max: 0.98
- Samples:
sentence1 sentence2 score "Гамлет" жүжиг УДЭТ-д тоглогдоно
"Скапений дамшиглал" жүжиг УДЭТ-д тоглогдоно.
0.7848628163337708
Киноны эхэнд нөхөртэйгээ дөнгөж танилцаж байх үедээ М.Тетчэр “Би нөхрийнхөө сүүдэр дор амьдарч, аяга угаахын төлөө төрсөн хүн биш
Харин киноны төгсгөлд нас барсан нөхрийгөө амьд мэтээр төсөөлж, түүнтэй үргэлж ярилцан ганцаардмал байдлаасаа ангижрахыг оролддог настай эмэгтэй цайны аягаа өөрөө угаачихаад цааш явж байгааг харуулсан юм
0.5108565092086792
Арга хэмжээний нээлтээр тоглолт болно
Нээлтийн арга хэмжээ нь тоглолт юм
0.8344829082489014
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
csv
- Dataset: csv
- Size: 11,113 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 20.22 tokens
- max: 128 tokens
- min: 4 tokens
- mean: 20.11 tokens
- max: 128 tokens
- min: -0.11
- mean: 0.49
- max: 1.0
- Samples:
sentence1 sentence2 score Гиннессийн амжилтад бүртгүүлсэн байна
Швед улсад очиж тоглох гэнэ.
0.3108136057853699
PLAYTIME 2014 наадам нь Улаанбаатар хотын орчин үеийн хөгжмийн соёлыг хөгжүүлэхэд чиглэгдэнэ.
PLAYTIME 2014 наадам нь залууст амралт чөлөөт цагаа цэвэр агаарт өнгөрүүлэх боломжийг олгоно.
0.577198326587677
Альфа артист-аар тодорсон дуучин олон шагналын эзэн болно
Альфа артист-аар тодорсон нэг дуучин ирэх гуравдугаар сард Хонконгод болох Бруно Марсын тоглолтыг үзэх клип хийлгэх гэх зэрэг олон шагналын эзэн болох юм байна.
0.6577209830284119
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine |
---|---|---|---|---|
0 | 0 | - | - | 1.0000 |
0.1799 | 100 | 0.0045 | - | - |
0.3597 | 200 | 0.006 | - | - |
0.5396 | 300 | 0.006 | - | - |
0.7194 | 400 | 0.005 | - | - |
0.8993 | 500 | 0.0047 | 0.0030 | 0.9652 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}