|
_base_ = [ |
|
'../_base_/datasets/nus-3d.py', |
|
'../_base_/models/centerpoint_voxel01_second_secfpn_nus.py', |
|
'../_base_/schedules/cyclic-20e.py', '../_base_/default_runtime.py' |
|
] |
|
|
|
|
|
|
|
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0] |
|
|
|
|
|
|
|
|
|
class_names = [ |
|
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', |
|
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' |
|
] |
|
data_prefix = dict(pts='samples/LIDAR_TOP', img='', sweeps='sweeps/LIDAR_TOP') |
|
model = dict( |
|
data_preprocessor=dict( |
|
voxel_layer=dict(point_cloud_range=point_cloud_range)), |
|
pts_bbox_head=dict(bbox_coder=dict(pc_range=point_cloud_range[:2])), |
|
|
|
train_cfg=dict(pts=dict(point_cloud_range=point_cloud_range)), |
|
test_cfg=dict(pts=dict(pc_range=point_cloud_range[:2]))) |
|
|
|
dataset_type = 'NuScenesDataset' |
|
data_root = 'data/nuscenes/' |
|
backend_args = None |
|
|
|
db_sampler = dict( |
|
data_root=data_root, |
|
info_path=data_root + 'nuscenes_dbinfos_train.pkl', |
|
rate=1.0, |
|
prepare=dict( |
|
filter_by_difficulty=[-1], |
|
filter_by_min_points=dict( |
|
car=5, |
|
truck=5, |
|
bus=5, |
|
trailer=5, |
|
construction_vehicle=5, |
|
traffic_cone=5, |
|
barrier=5, |
|
motorcycle=5, |
|
bicycle=5, |
|
pedestrian=5)), |
|
classes=class_names, |
|
sample_groups=dict( |
|
car=2, |
|
truck=3, |
|
construction_vehicle=7, |
|
bus=4, |
|
trailer=6, |
|
barrier=2, |
|
motorcycle=6, |
|
bicycle=6, |
|
pedestrian=2, |
|
traffic_cone=2), |
|
points_loader=dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=5, |
|
use_dim=[0, 1, 2, 3, 4], |
|
backend_args=backend_args), |
|
backend_args=backend_args) |
|
|
|
train_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=5, |
|
use_dim=5, |
|
backend_args=backend_args), |
|
dict( |
|
type='LoadPointsFromMultiSweeps', |
|
sweeps_num=9, |
|
use_dim=[0, 1, 2, 3, 4], |
|
pad_empty_sweeps=True, |
|
remove_close=True, |
|
backend_args=backend_args), |
|
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), |
|
dict(type='ObjectSample', db_sampler=db_sampler), |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[-0.3925, 0.3925], |
|
scale_ratio_range=[0.95, 1.05], |
|
translation_std=[0, 0, 0]), |
|
dict( |
|
type='RandomFlip3D', |
|
sync_2d=False, |
|
flip_ratio_bev_horizontal=0.5, |
|
flip_ratio_bev_vertical=0.5), |
|
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='ObjectNameFilter', classes=class_names), |
|
dict(type='PointShuffle'), |
|
dict( |
|
type='Pack3DDetInputs', |
|
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) |
|
] |
|
test_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=5, |
|
use_dim=5, |
|
backend_args=backend_args), |
|
dict( |
|
type='LoadPointsFromMultiSweeps', |
|
sweeps_num=9, |
|
use_dim=[0, 1, 2, 3, 4], |
|
pad_empty_sweeps=True, |
|
remove_close=True, |
|
backend_args=backend_args), |
|
dict( |
|
type='MultiScaleFlipAug3D', |
|
img_scale=(1333, 800), |
|
pts_scale_ratio=1, |
|
flip=False, |
|
transforms=[ |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[0, 0], |
|
scale_ratio_range=[1., 1.], |
|
translation_std=[0, 0, 0]), |
|
dict(type='RandomFlip3D'), |
|
dict( |
|
type='PointsRangeFilter', point_cloud_range=point_cloud_range) |
|
]), |
|
dict(type='Pack3DDetInputs', keys=['points']) |
|
] |
|
|
|
train_dataloader = dict( |
|
_delete_=True, |
|
batch_size=4, |
|
num_workers=4, |
|
persistent_workers=True, |
|
sampler=dict(type='DefaultSampler', shuffle=True), |
|
dataset=dict( |
|
type='CBGSDataset', |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='nuscenes_infos_train.pkl', |
|
pipeline=train_pipeline, |
|
metainfo=dict(classes=class_names), |
|
test_mode=False, |
|
data_prefix=data_prefix, |
|
use_valid_flag=True, |
|
|
|
|
|
box_type_3d='LiDAR', |
|
backend_args=backend_args))) |
|
test_dataloader = dict( |
|
dataset=dict(pipeline=test_pipeline, metainfo=dict(classes=class_names))) |
|
val_dataloader = dict( |
|
dataset=dict(pipeline=test_pipeline, metainfo=dict(classes=class_names))) |
|
|
|
train_cfg = dict(val_interval=20) |
|
|