bert_uncased_L-4_H-768_A-12_emotion
This model is a fine-tuned version of google/bert_uncased_L-4_H-768_A-12 on the emotion dataset. It achieves the following results on the evaluation set:
- Loss: 0.1663
- Accuracy: 0.941
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 33
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5901 | 1.0 | 250 | 0.1948 | 0.9265 |
0.1632 | 2.0 | 500 | 0.1523 | 0.937 |
0.1128 | 3.0 | 750 | 0.1499 | 0.938 |
0.089 | 4.0 | 1000 | 0.1583 | 0.937 |
0.0707 | 5.0 | 1250 | 0.1663 | 0.941 |
0.0541 | 6.0 | 1500 | 0.1716 | 0.9355 |
0.0376 | 7.0 | 1750 | 0.1928 | 0.937 |
0.0268 | 8.0 | 2000 | 0.2162 | 0.9365 |
0.0217 | 9.0 | 2250 | 0.2396 | 0.9355 |
0.0179 | 10.0 | 2500 | 0.2442 | 0.9365 |
Framework versions
- Transformers 4.34.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 133
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for gokuls/bert_uncased_L-4_H-768_A-12_emotion
Base model
google/bert_uncased_L-4_H-768_A-12