File size: 2,319 Bytes
1e264d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: apache-2.0
base_model: google/bert_uncased_L-4_H-768_A-12
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: bert_uncased_L-4_H-768_A-12_emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.941
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_uncased_L-4_H-768_A-12_emotion
This model is a fine-tuned version of [google/bert_uncased_L-4_H-768_A-12](https://huggingface.co/google/bert_uncased_L-4_H-768_A-12) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1663
- Accuracy: 0.941
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 33
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5901 | 1.0 | 250 | 0.1948 | 0.9265 |
| 0.1632 | 2.0 | 500 | 0.1523 | 0.937 |
| 0.1128 | 3.0 | 750 | 0.1499 | 0.938 |
| 0.089 | 4.0 | 1000 | 0.1583 | 0.937 |
| 0.0707 | 5.0 | 1250 | 0.1663 | 0.941 |
| 0.0541 | 6.0 | 1500 | 0.1716 | 0.9355 |
| 0.0376 | 7.0 | 1750 | 0.1928 | 0.937 |
| 0.0268 | 8.0 | 2000 | 0.2162 | 0.9365 |
| 0.0217 | 9.0 | 2250 | 0.2396 | 0.9355 |
| 0.0179 | 10.0 | 2500 | 0.2442 | 0.9365 |
### Framework versions
- Transformers 4.34.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.14.5
- Tokenizers 0.14.1
|