bert_uncased_L-4_H-768_A-12_massive

This model is a fine-tuned version of google/bert_uncased_L-4_H-768_A-12 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5747
  • Accuracy: 0.8898

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1636 1.0 180 0.9552 0.7983
0.7696 2.0 360 0.5934 0.8539
0.4303 3.0 540 0.4996 0.8721
0.2708 4.0 720 0.4900 0.8780
0.1756 5.0 900 0.4886 0.8780
0.113 6.0 1080 0.5020 0.8829
0.076 7.0 1260 0.5211 0.8810
0.0517 8.0 1440 0.5452 0.8864
0.035 9.0 1620 0.5516 0.8883
0.026 10.0 1800 0.5652 0.8864
0.0193 11.0 1980 0.5696 0.8869
0.0156 12.0 2160 0.5592 0.8888
0.0134 13.0 2340 0.5762 0.8893
0.0103 14.0 2520 0.5726 0.8883
0.0107 15.0 2700 0.5747 0.8898

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for gokuls/bert_uncased_L-4_H-768_A-12_massive

Finetuned
(2)
this model

Evaluation results