bert_base_lda_5_v1

This model is a fine-tuned version of on the gokulsrinivasagan/processed_wikitext-103-raw-v1-ld-5 dataset. It achieves the following results on the evaluation set:

  • Loss: 7.2047
  • Accuracy: 0.1560

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 96
  • eval_batch_size: 96
  • seed: 10
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
7.5336 4.1982 10000 7.4824 0.1509
7.3176 8.3963 20000 7.3286 0.1524
7.2331 12.5945 30000 7.2804 0.1554
7.1765 16.7926 40000 7.2542 0.1544
7.1457 20.9908 50000 7.2485 0.1525

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.2.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
4
Safetensors
Model size
110M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for gokulsrinivasagan/bert_base_lda_5_v1

Finetunes
9 models

Dataset used to train gokulsrinivasagan/bert_base_lda_5_v1

Evaluation results

  • Accuracy on gokulsrinivasagan/processed_wikitext-103-raw-v1-ld-5
    self-reported
    0.156