bert_uncased_L-4_H-128_A-2_rte

This model is a fine-tuned version of google/bert_uncased_L-4_H-128_A-2 on the GLUE RTE dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6659
  • Accuracy: 0.6173

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6967 1.0 10 0.6907 0.5523
0.689 2.0 20 0.6875 0.5740
0.6832 3.0 30 0.6854 0.5379
0.6776 4.0 40 0.6809 0.5632
0.6694 5.0 50 0.6780 0.5812
0.6599 6.0 60 0.6749 0.5740
0.6469 7.0 70 0.6726 0.5993
0.6392 8.0 80 0.6712 0.5776
0.6221 9.0 90 0.6682 0.5884
0.6034 10.0 100 0.6684 0.5957
0.5867 11.0 110 0.6717 0.5993
0.5686 12.0 120 0.6690 0.6065
0.5596 13.0 130 0.6659 0.6173
0.5377 14.0 140 0.6720 0.6101
0.5249 15.0 150 0.6820 0.6029
0.5019 16.0 160 0.6896 0.6065
0.492 17.0 170 0.6977 0.6029
0.4786 18.0 180 0.7027 0.6173

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3
Downloads last month
103
Safetensors
Model size
4.78M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gokulsrinivasagan/bert_uncased_L-4_H-128_A-2_rte

Finetuned
(13)
this model

Dataset used to train gokulsrinivasagan/bert_uncased_L-4_H-128_A-2_rte

Evaluation results