metadata
library_name: transformers
language:
- en
license: apache-2.0
base_model: google/bert_uncased_L-4_H-128_A-2
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert_uncased_L-4_H-128_A-2_wnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE WNLI
type: glue
args: wnli
metrics:
- name: Accuracy
type: accuracy
value: 0.352112676056338
bert_uncased_L-4_H-128_A-2_wnli
This model is a fine-tuned version of google/bert_uncased_L-4_H-128_A-2 on the GLUE WNLI dataset. It achieves the following results on the evaluation set:
- Loss: 0.7042
- Accuracy: 0.3521
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6968 | 1.0 | 3 | 0.7060 | 0.4225 |
0.6898 | 2.0 | 6 | 0.7042 | 0.3521 |
0.6912 | 3.0 | 9 | 0.7055 | 0.3662 |
0.695 | 4.0 | 12 | 0.7075 | 0.3380 |
0.6946 | 5.0 | 15 | 0.7099 | 0.3099 |
0.6921 | 6.0 | 18 | 0.7122 | 0.3099 |
0.6874 | 7.0 | 21 | 0.7140 | 0.3239 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3