metadata
library_name: transformers
language:
- en
base_model: gokulsrinivasagan/distilbert_lda_5_v1
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: distilbert_lda_5_v1_qqp
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QQP
type: glue
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.8815978233984665
- name: F1
type: f1
value: 0.8448046685038093
distilbert_lda_5_v1_qqp
This model is a fine-tuned version of gokulsrinivasagan/distilbert_lda_5_v1 on the GLUE QQP dataset. It achieves the following results on the evaluation set:
- Loss: 0.2878
- Accuracy: 0.8816
- F1: 0.8448
- Combined Score: 0.8632
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.376 | 1.0 | 1422 | 0.3084 | 0.8608 | 0.8144 | 0.8376 |
0.267 | 2.0 | 2844 | 0.2947 | 0.8694 | 0.8362 | 0.8528 |
0.2049 | 3.0 | 4266 | 0.2878 | 0.8816 | 0.8448 | 0.8632 |
0.1541 | 4.0 | 5688 | 0.3070 | 0.8845 | 0.8391 | 0.8618 |
0.1166 | 5.0 | 7110 | 0.3458 | 0.8864 | 0.8441 | 0.8653 |
0.0894 | 6.0 | 8532 | 0.3844 | 0.8853 | 0.8449 | 0.8651 |
0.0719 | 7.0 | 9954 | 0.4213 | 0.8848 | 0.8482 | 0.8665 |
0.0579 | 8.0 | 11376 | 0.4257 | 0.8842 | 0.8468 | 0.8655 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3