YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

This model corresponds to tapas_masklm_base_reset of the original repository.

Here's how you can use it:

from transformers import TapasTokenizer, TapasForMaskedLM
import pandas as pd
import torch

tokenizer = TapasTokenizer.from_pretrained("google/tapas-base-masklm")
model = TapasForMaskedLM.from_pretrained("google/tapas-base-masklm")

data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
        'Age': ["56", "45", "59"],
        'Number of movies': ["87", "53", "69"]
}
table = pd.DataFrame.from_dict(data)
query = "How many movies has Leonardo [MASK] Caprio played in?"

# prepare inputs
inputs = tokenizer(table=table, queries=query, padding="max_length", return_tensors="pt")

# forward pass
outputs = model(**inputs)

# return top 5 values and predictions
masked_index = torch.nonzero(inputs.input_ids.squeeze() == tokenizer.mask_token_id, as_tuple=False)
logits = outputs.logits[0, masked_index.item(), :]
probs = logits.softmax(dim=0)
values, predictions = probs.topk(5)

for value, pred in zip(values, predictions):
  print(f"{tokenizer.decode([pred])} with confidence {value}")
Downloads last month
7
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.