Model Card for Spivavtor-Large

This model was obtained by instruction tuning bigscience/mt0-large model on the Spivavtor dataset. All details of the dataset and fine tuning process can be found in our paper.

Paper: Spivavtor: An Instruction Tuned Ukrainian Text Editing Model

Authors: Aman Saini, Artem Chernodub, Vipul Raheja, Vivek Kulkarni

Model Details

Model Description

  • Language: Ukrainian
  • Finetuned from model: bigscience/mt0-large

How to use

We make the following models available from our paper.

Model Number of parameters Reference name in Paper
Spivavtor-large 1.2B SPIVAVTOR-MT0-LARGE
Spivavtor-xxl 13B SPIVAVTOR-AYA-101

Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("grammarly/spivavtor-large")
model = AutoModelForSeq2SeqLM.from_pretrained("grammarly/spivavtor-large")

# Paraphrase the sentence: What is the greatest compliment that you ever received from anyone?
input_text = 'Перефразуйте речення: Який найкращий комплімент, який ти отримував від будь-кого?'

inputs = tokenizer.encode(input_text, return_tensors="pt")
output = model.generate(inputs, max_length=256)
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
Downloads last month
44
Safetensors
Model size
1.23B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for grammarly/spivavtor-large

Adapters
3 models

Dataset used to train grammarly/spivavtor-large

Collection including grammarly/spivavtor-large