griffio's picture
dungeon-geo-morphs
1005e6a verified
|
raw
history blame
2.48 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-large-patch16-224
tags:
  - image-classification
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-large-patch16-224-dungeon-geo-morphs-0-4-28Nov24-006
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: dungeon-geo-morphs
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9821428571428571

vit-large-patch16-224-dungeon-geo-morphs-0-4-28Nov24-006

This model is a fine-tuned version of google/vit-large-patch16-224 on the dungeon-geo-morphs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0747
  • Accuracy: 0.9821

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6194 4.0 10 1.2322 0.6214
0.7978 8.0 20 0.5919 0.925
0.2576 12.0 30 0.2721 0.9679
0.0723 16.0 40 0.1548 0.9786
0.0202 20.0 50 0.1066 0.9768
0.0067 24.0 60 0.0747 0.9821
0.0035 28.0 70 0.0754 0.9768
0.0027 32.0 80 0.0730 0.9786

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3