Jon Durbin's Airoboros 13B GPT4 1.3 GGML

These files are GGML format model files for Jon Durbin's Airoboros 13B GPT4 1.3.

Note from model creator Jon Durbin: This version has problems, use if you dare, or wait for 1.4.

GGML files are for CPU + GPU inference using llama.cpp and libraries and UIs which support this format, such as:

Repositories available

Prompt template

A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input.
USER: prompt
ASSISTANT: 

Compatibility

Original llama.cpp quant methods: q4_0, q4_1, q5_0, q5_1, q8_0

I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit 2d5db48.

These are guaranteed to be compatbile with any UIs, tools and libraries released since late May.

New k-quant methods: q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K

These new quantisation methods are compatible with llama.cpp as of June 6th, commit 2d43387.

They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python and ctransformers. Other tools and libraries may or may not be compatible - check their documentation if in doubt.

Explanation of the new k-quant methods

The new methods available are:

  • GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
  • GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
  • GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
  • GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
  • GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
  • GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.

Refer to the Provided Files table below to see what files use which methods, and how.

Provided files

Name Quant method Bits Size Max RAM required Use case
airoboros-13b-gpt4-1.3.ggmlv3.q2_K.bin q2_K 2 5.51 GB 8.01 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors.
airoboros-13b-gpt4-1.3.ggmlv3.q3_K_L.bin q3_K_L 3 6.93 GB 9.43 GB New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
airoboros-13b-gpt4-1.3.ggmlv3.q3_K_M.bin q3_K_M 3 6.31 GB 8.81 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
airoboros-13b-gpt4-1.3.ggmlv3.q3_K_S.bin q3_K_S 3 5.66 GB 8.16 GB New k-quant method. Uses GGML_TYPE_Q3_K for all tensors
airoboros-13b-gpt4-1.3.ggmlv3.q4_0.bin q4_0 4 7.32 GB 9.82 GB Original llama.cpp quant method, 4-bit.
airoboros-13b-gpt4-1.3.ggmlv3.q4_1.bin q4_1 4 8.14 GB 10.64 GB Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
airoboros-13b-gpt4-1.3.ggmlv3.q4_K_M.bin q4_K_M 4 7.87 GB 10.37 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K
airoboros-13b-gpt4-1.3.ggmlv3.q4_K_S.bin q4_K_S 4 7.37 GB 9.87 GB New k-quant method. Uses GGML_TYPE_Q4_K for all tensors
airoboros-13b-gpt4-1.3.ggmlv3.q5_0.bin q5_0 5 8.95 GB 11.45 GB Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference.
airoboros-13b-gpt4-1.3.ggmlv3.q5_1.bin q5_1 5 9.76 GB 12.26 GB Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference.
airoboros-13b-gpt4-1.3.ggmlv3.q5_K_M.bin q5_K_M 5 9.23 GB 11.73 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K
airoboros-13b-gpt4-1.3.ggmlv3.q5_K_S.bin q5_K_S 5 8.97 GB 11.47 GB New k-quant method. Uses GGML_TYPE_Q5_K for all tensors
airoboros-13b-gpt4-1.3.ggmlv3.q6_K.bin q6_K 6 10.68 GB 13.18 GB New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors
airoboros-13b-gpt4-1.3.ggmlv3.q8_0.bin q8_0 8 13.83 GB 16.33 GB Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users.

Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

How to run in llama.cpp

I use the following command line; adjust for your tastes and needs:

./main -t 10 -ngl 32 -m airoboros-13b-gpt4-1.3.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "USER: Write a story about llamas\nASSISTANT:"

If you're able to use full GPU offloading, you should use -t 1 to get best performance.

If not able to fully offload to GPU, you should use more cores. Change -t 10 to the number of physical CPU cores you have, or a lower number depending on what gives best performance.

Change -ngl 32 to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

If you want to have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

How to run in text-generation-webui

Further instructions here: text-generation-webui/docs/llama.cpp-models.md.

Original model card: Jon Durbin's Airoboros 13B GPT4 1.3

Not tested yet, use if you want, but I would probably wait for 1.4!

Overview

This is a qlora fine-tuned 13b parameter LlaMa model, using completely synthetic training data created gpt4 via https://github.com/jondurbin/airoboros

This is mostly an extension of 1.2 with a few enhancements:

  • All coding instructions have an equivalent " PLAINFORMAT" version now.
  • Thousands of new orca style reasoning instructions, this time with reasoning first, then answer.
  • Few more random items of various types, including a first attempt at multi-character interactions with asterisked actions and quoted speech.

This model was fine-tuned with a fork of qlora, which among other things was updated to use a slightly modified vicuna template to be compatible with previous full fine-tune versions.

A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. USER: [prompt] ASSISTANT: 

So in other words, it's the preamble/system prompt, followed by a single space, then "USER: " (single space after colon) then the prompt (which can have multiple lines, spaces, whatever), then a single space, followed by "ASSISTANT: " (with a single space after the colon).

Usage

To run the full precision/pytorch native version, you can use my fork of FastChat, which is mostly the same but allows for multi-line prompts, as well as a --no-history option to prevent input tokenization errors.

pip install git+https://github.com/jondurbin/FastChat

Be sure you are pulling the latest branch!

Then, you can invoke it like so (after downloading the model):

python -m fastchat.serve.cli \
  --model-path airoboros-13b-gpt4-1.3 \
  --temperature 0.5 \
  --max-new-tokens 2048 \
  --no-history
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train gsaivinay/airoboros-13B-gpt4-1.3-GGML

Spaces using gsaivinay/airoboros-13B-gpt4-1.3-GGML 2