Jon Durbin's Airoboros 13B GPT4 1.3 GGML
These files are GGML format model files for Jon Durbin's Airoboros 13B GPT4 1.3.
Note from model creator Jon Durbin: This version has problems, use if you dare, or wait for 1.4.
GGML files are for CPU + GPU inference using llama.cpp and libraries and UIs which support this format, such as:
Repositories available
- 4-bit GPTQ models for GPU inference
- 2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference
- Unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template
A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input.
USER: prompt
ASSISTANT:
Compatibility
Original llama.cpp quant methods: q4_0, q4_1, q5_0, q5_1, q8_0
I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit 2d5db48
.
These are guaranteed to be compatbile with any UIs, tools and libraries released since late May.
New k-quant methods: q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K
These new quantisation methods are compatible with llama.cpp as of June 6th, commit 2d43387
.
They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python and ctransformers. Other tools and libraries may or may not be compatible - check their documentation if in doubt.
Explanation of the new k-quant methods
The new methods available are:
- GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
- GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
- GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
- GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
- GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
- GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
Provided files
Name | Quant method | Bits | Size | Max RAM required | Use case |
---|---|---|---|---|---|
airoboros-13b-gpt4-1.3.ggmlv3.q2_K.bin | q2_K | 2 | 5.51 GB | 8.01 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
airoboros-13b-gpt4-1.3.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.93 GB | 9.43 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
airoboros-13b-gpt4-1.3.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.31 GB | 8.81 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
airoboros-13b-gpt4-1.3.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.66 GB | 8.16 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
airoboros-13b-gpt4-1.3.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. |
airoboros-13b-gpt4-1.3.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
airoboros-13b-gpt4-1.3.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.87 GB | 10.37 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
airoboros-13b-gpt4-1.3.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.37 GB | 9.87 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
airoboros-13b-gpt4-1.3.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
airoboros-13b-gpt4-1.3.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
airoboros-13b-gpt4-1.3.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.23 GB | 11.73 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
airoboros-13b-gpt4-1.3.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.97 GB | 11.47 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
airoboros-13b-gpt4-1.3.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
airoboros-13b-gpt4-1.3.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
How to run in llama.cpp
I use the following command line; adjust for your tastes and needs:
./main -t 10 -ngl 32 -m airoboros-13b-gpt4-1.3.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "USER: Write a story about llamas\nASSISTANT:"
If you're able to use full GPU offloading, you should use -t 1
to get best performance.
If not able to fully offload to GPU, you should use more cores. Change -t 10
to the number of physical CPU cores you have, or a lower number depending on what gives best performance.
Change -ngl 32
to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
If you want to have a chat-style conversation, replace the -p <PROMPT>
argument with -i -ins
How to run in text-generation-webui
Further instructions here: text-generation-webui/docs/llama.cpp-models.md.
Original model card: Jon Durbin's Airoboros 13B GPT4 1.3
Not tested yet, use if you want, but I would probably wait for 1.4!
Overview
This is a qlora fine-tuned 13b parameter LlaMa model, using completely synthetic training data created gpt4 via https://github.com/jondurbin/airoboros
This is mostly an extension of 1.2 with a few enhancements:
- All coding instructions have an equivalent " PLAINFORMAT" version now.
- Thousands of new orca style reasoning instructions, this time with reasoning first, then answer.
- Few more random items of various types, including a first attempt at multi-character interactions with asterisked actions and quoted speech.
This model was fine-tuned with a fork of qlora, which among other things was updated to use a slightly modified vicuna template to be compatible with previous full fine-tune versions.
A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. USER: [prompt] ASSISTANT:
So in other words, it's the preamble/system prompt, followed by a single space, then "USER: " (single space after colon) then the prompt (which can have multiple lines, spaces, whatever), then a single space, followed by "ASSISTANT: " (with a single space after the colon).
Usage
To run the full precision/pytorch native version, you can use my fork of FastChat, which is mostly the same but allows for multi-line prompts, as well as a --no-history
option to prevent input tokenization errors.
pip install git+https://github.com/jondurbin/FastChat
Be sure you are pulling the latest branch!
Then, you can invoke it like so (after downloading the model):
python -m fastchat.serve.cli \
--model-path airoboros-13b-gpt4-1.3 \
--temperature 0.5 \
--max-new-tokens 2048 \
--no-history
- Downloads last month
- 7