SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5 on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Represent this sentence for searching relevant passages: What are some effects of maternal iron deficiency on adult male offspring development?',
'We found three differentially abundant taxonomic classes in the IDD group using an LDA effect size calculation with an LDA score higher than 4.0. The results showed that the Bacteroidaceae genus Bacteroides and Lachnospiraceae genus Marvinbryantia were significantly increased in rats in the IDD group compared to rats in the other groups (C). \nIn this study, we showed that maternal iron deficiency may program and alter adult male offspring development with regard to spatial learning and memory, dorsal hippocampus BDNF expression, gut microbiota, and SCFA concentrations. Our results showed that the adult male offspring of rats that were fed a low-iron diet before pregnancy and throughout the lactation period had (1) spatial deficits via a Morris water maze evaluation; (2) decreased dorsal hippocampal BDNF mRNA and protein concentrations accompanied by a low TrkB abundance; (3) a decreased plasma acetate concentration without changes in butyrate and propionate concentrations; (4) enrichment of the Bacteroidaceae genus Bacteroides and Lachnospiraceae genus Marvinbryantia.',
'Parents report encouraging their children to engage in “healthy” lifestyle choices, including making alterations to diet, physical activity (PA), and sleep behavior, which may (1) help parents feel more in control over the impact of the condition, and (2) allow them gain a more positive outlook on the future. Unfortunately, even in the adult MS literature, there is insufficient evidence to make clinical recommendations regarding lifestyle modifications. Improving the body of literature on modifiable lifestyle factors in pediatric MS with the goal of creating guidelines that will help POMS patients and their parents deal with these difficult decisions is needed. \nOur objective in this manuscript is to summarize and identify gaps in current research on modifiable lifestyle factors and pediatric MS. Two questions guided this review: (1) Which modifiable lifestyle factors have been investigated in the context of POMS? And (2) which factors have been shown to play a role in the risk of POMS, disease course, or quality of life? \nWe used the Arksey and O’Malley framework to guide this review.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5854 |
cosine_accuracy@3 | 0.7196 |
cosine_accuracy@5 | 0.7635 |
cosine_accuracy@10 | 0.8084 |
cosine_precision@1 | 0.5854 |
cosine_precision@3 | 0.2399 |
cosine_precision@5 | 0.1527 |
cosine_precision@10 | 0.0808 |
cosine_recall@1 | 0.5854 |
cosine_recall@3 | 0.7196 |
cosine_recall@5 | 0.7635 |
cosine_recall@10 | 0.8084 |
cosine_ndcg@10 | 0.6971 |
cosine_mrr@10 | 0.6615 |
cosine_map@100 | 0.6663 |
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 650,596 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 16 tokens
- mean: 26.5 tokens
- max: 65 tokens
- min: 25 tokens
- mean: 229.67 tokens
- max: 512 tokens
- Samples:
anchor positive Represent this sentence for searching relevant passages: What conditions are excluded as secondary causes of hypercholesterolemia?
In addition, no abnormalities were revealed under physical examination.
The exclusion criteria comprised secondary causes of hypercholesterolemia, including hypothyroidism, kidney diseases, poorly-controlled diabetes, cholestasis or the use of drugs impairing lipid metabolism.
The investigation was approved by the Bioethics Committee of the Medical University of Lodz (RNN/191/21/KE). Informed consent was obtained from all participants. All methods were carried out in accordance with relevant guidelines and regulations.
All participants were interviewed for their personal history of diabetes, hypertension, smoking, cardiovascular disease, pharmacological treatment, family history of hypercholesterolemia and cardiovascular disease. During the same visit, a physical examination for the presence of corneal arcus and tendon xanthomas was performed.
In both the control and research groups, peripheral blood mononuclear cells (PBMCs) and serum were isolated from peripheral whole blood. All...Represent this sentence for searching relevant passages: What type of mannose linkage in side chains has the highest impact on antibody response?
On the other hand, side chains with β-(1→2)-linked mannose residues, which have the highest impact on antibody response , were found only in Candida spp.. The oligomannoside sequence within S. cerevisiae mannan corresponding to antibodies associated with Crohn’s disease was assigned to be the following mannotetraoside: Man(1→3)Man(1→2)Man(1→2)Man , which is illustrated in. Therefore, the corresponding oligosaccharide 1 was selected in this study as a basis for the creation of structurally related glycoarray. Ligands 2 and 3 stem from 1 after formally replacing the terminal α-(1→3)-mannoside fragment with α-(1→2)- and β-(1→2)-mannoside units, respectively. Additional glycosylation of ligand 1 leads to the formation of ligands 4 and 5.
Represent this sentence for searching relevant passages: How do fluctuations in nest temperature affect bumblebee colonies in aboveground nest boxes?
Impairments to colony function, as a result a sublethal environmental stressors, are linked with reduced colony success , therefore, combined increases in worker abandonment and reduced offspring production may act to have the greatest impact on bumblebee colony success under chronic heat stress.
The results obtained from our laboratory study inform about the capacity of bumblebee colonies to cope with chronic warm temperatures, but there are several distinctions when transposed to natural settings. Conditions used correspond more to surface or aboveground nesting that provide minor buffering from the environment. Underground nest sites are the most frequently observed nesting strategies across multiple bumblebee species, including B. impatiens. However, surface or aboveground nest sites combined are almost as frequently reported for natural settings and even more frequent when nesting in artificial nest such as human made structures. Aboveground temperatures can cause wide fluctuatio... - Loss:
CachedGISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Dense({'in_features': 1024, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'}) ), 'temperature': 0.01}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32768num_train_epochs
: 8lr_scheduler_type
: cosinewarmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32768per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 8max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | cosine_ndcg@10 |
---|---|---|---|
0.0526 | 1 | 7.2666 | - |
0.1053 | 2 | 7.2688 | - |
0.1579 | 3 | 6.8798 | - |
0.2105 | 4 | 6.0896 | - |
0.2632 | 5 | 5.1499 | 0.5392 |
0.3158 | 6 | 4.2179 | - |
0.3684 | 7 | 3.4166 | - |
0.4211 | 8 | 2.9593 | - |
0.4737 | 9 | 2.8846 | - |
0.5263 | 10 | 2.8879 | 0.5541 |
0.5789 | 11 | 2.728 | - |
0.6316 | 12 | 2.5792 | - |
0.6842 | 13 | 2.4242 | - |
0.7368 | 14 | 2.2856 | - |
0.7895 | 15 | 2.2488 | 0.5852 |
0.8421 | 16 | 2.1646 | - |
0.8947 | 17 | 2.0432 | - |
0.9474 | 18 | 1.9749 | - |
1.0 | 19 | 1.8132 | - |
1.0526 | 20 | 1.8851 | 0.6135 |
1.1053 | 21 | 1.8024 | - |
1.1579 | 22 | 1.777 | - |
1.2105 | 23 | 1.7047 | - |
1.2632 | 24 | 1.6751 | - |
1.3158 | 25 | 1.6875 | 0.6283 |
1.3684 | 26 | 1.6396 | - |
1.4211 | 27 | 1.5756 | - |
1.4737 | 28 | 1.5591 | - |
1.5263 | 29 | 1.533 | - |
1.5789 | 30 | 1.5035 | 0.6449 |
1.6316 | 31 | 1.4705 | - |
1.6842 | 32 | 1.4446 | - |
1.7368 | 33 | 1.4092 | - |
1.7895 | 34 | 1.4139 | - |
1.8421 | 35 | 1.3996 | 0.6557 |
1.8947 | 36 | 1.365 | - |
1.9474 | 37 | 1.3397 | - |
2.0 | 38 | 1.2443 | - |
2.0526 | 39 | 1.3322 | - |
2.1053 | 40 | 1.2862 | 0.6632 |
2.1579 | 41 | 1.2965 | - |
2.2105 | 42 | 1.2544 | - |
2.2632 | 43 | 1.2474 | - |
2.3158 | 44 | 1.2748 | - |
2.3684 | 45 | 1.2509 | 0.6688 |
2.4211 | 46 | 1.2271 | - |
2.4737 | 47 | 1.2172 | - |
2.5263 | 48 | 1.2263 | - |
2.5789 | 49 | 1.1919 | - |
2.6316 | 50 | 1.1962 | 0.6748 |
2.6842 | 51 | 1.1732 | - |
2.7368 | 52 | 1.1683 | - |
2.7895 | 53 | 1.1711 | - |
2.8421 | 54 | 1.1783 | - |
2.8947 | 55 | 1.1353 | 0.6784 |
2.9474 | 56 | 1.1301 | - |
3.0 | 57 | 1.0551 | - |
3.0526 | 58 | 1.1436 | - |
3.1053 | 59 | 1.0967 | - |
3.1579 | 60 | 1.1259 | 0.6822 |
3.2105 | 61 | 1.085 | - |
3.2632 | 62 | 1.1107 | - |
3.3158 | 63 | 1.104 | - |
3.3684 | 64 | 1.1113 | - |
3.4211 | 65 | 1.0884 | 0.6849 |
3.4737 | 66 | 1.079 | - |
3.5263 | 67 | 1.0946 | - |
3.5789 | 68 | 1.0751 | - |
3.6316 | 69 | 1.0585 | - |
3.6842 | 70 | 1.0601 | 0.6877 |
3.7368 | 71 | 1.0576 | - |
3.7895 | 72 | 1.0558 | - |
3.8421 | 73 | 1.0642 | - |
3.8947 | 74 | 1.0349 | - |
3.9474 | 75 | 1.0368 | 0.6889 |
4.0 | 76 | 0.9558 | - |
4.0526 | 77 | 1.0487 | - |
4.1053 | 78 | 1.0164 | - |
4.1579 | 79 | 1.0359 | - |
4.2105 | 80 | 1.0095 | 0.6908 |
4.2632 | 81 | 1.0194 | - |
4.3158 | 82 | 1.0359 | - |
4.3684 | 83 | 1.0266 | - |
4.4211 | 84 | 1.0161 | - |
4.4737 | 85 | 1.0188 | 0.6913 |
4.5263 | 86 | 1.0265 | - |
4.5789 | 87 | 1.0193 | - |
4.6316 | 88 | 1.0052 | - |
4.6842 | 89 | 0.9994 | - |
4.7368 | 90 | 1.0024 | 0.6934 |
4.7895 | 91 | 1.0134 | - |
4.8421 | 92 | 1.0259 | - |
4.8947 | 93 | 0.9807 | - |
4.9474 | 94 | 0.9947 | - |
5.0 | 95 | 0.9139 | 0.6945 |
5.0526 | 96 | 0.9956 | - |
5.1053 | 97 | 0.9615 | - |
5.1579 | 98 | 0.9942 | - |
5.2105 | 99 | 0.9616 | - |
5.2632 | 100 | 0.9848 | 0.6947 |
5.3158 | 101 | 0.9967 | - |
5.3684 | 102 | 0.9861 | - |
5.4211 | 103 | 0.9694 | - |
5.4737 | 104 | 0.984 | - |
5.5263 | 105 | 0.9953 | 0.6953 |
5.5789 | 106 | 0.987 | - |
5.6316 | 107 | 0.9745 | - |
5.6842 | 108 | 0.9582 | - |
5.7368 | 109 | 0.957 | - |
5.7895 | 110 | 0.9826 | 0.6960 |
5.8421 | 111 | 0.9911 | - |
5.8947 | 112 | 0.96 | - |
5.9474 | 113 | 0.9593 | - |
6.0 | 114 | 0.8886 | - |
6.0526 | 115 | 0.9722 | 0.6963 |
6.1053 | 116 | 0.9507 | - |
6.1579 | 117 | 0.9767 | - |
6.2105 | 118 | 0.9394 | - |
6.2632 | 119 | 0.9569 | - |
6.3158 | 120 | 0.9674 | 0.6965 |
6.3684 | 121 | 0.9674 | - |
6.4211 | 122 | 0.9606 | - |
6.4737 | 123 | 0.96 | - |
6.5263 | 124 | 0.9767 | - |
6.5789 | 125 | 0.9664 | 0.6968 |
6.6316 | 126 | 0.948 | - |
6.6842 | 127 | 0.9581 | - |
6.7368 | 128 | 0.9491 | - |
6.7895 | 129 | 0.9627 | - |
6.8421 | 130 | 0.9723 | 0.6971 |
6.8947 | 131 | 0.9447 | - |
6.9474 | 132 | 0.9502 | - |
7.0 | 133 | 0.8796 | - |
7.0526 | 134 | 0.9589 | - |
7.1053 | 135 | 0.9377 | 0.6971 |
7.1579 | 136 | 0.9573 | - |
7.2105 | 137 | 0.9369 | - |
7.2632 | 138 | 0.9559 | - |
7.3158 | 139 | 0.9662 | - |
7.3684 | 140 | 0.9615 | 0.6971 |
7.4211 | 141 | 0.9555 | - |
7.4737 | 142 | 0.9579 | - |
7.5263 | 143 | 0.9719 | - |
7.5789 | 144 | 0.9664 | - |
7.6316 | 145 | 0.9554 | 0.6972 |
7.6842 | 146 | 0.9526 | - |
7.7368 | 147 | 0.9456 | - |
7.7895 | 148 | 0.9621 | - |
7.8421 | 149 | 0.9669 | - |
7.8947 | 150 | 0.9473 | 0.6971 |
7.9474 | 151 | 0.9519 | - |
8.0 | 152 | 0.8705 | - |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.0
- Datasets: 2.19.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for gutsartificial/bge-small-en-v1.5-2025-01-01_21-55-17
Base model
BAAI/bge-small-en-v1.5Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.585
- Cosine Accuracy@3 on Unknownself-reported0.720
- Cosine Accuracy@5 on Unknownself-reported0.763
- Cosine Accuracy@10 on Unknownself-reported0.808
- Cosine Precision@1 on Unknownself-reported0.585
- Cosine Precision@3 on Unknownself-reported0.240
- Cosine Precision@5 on Unknownself-reported0.153
- Cosine Precision@10 on Unknownself-reported0.081
- Cosine Recall@1 on Unknownself-reported0.585
- Cosine Recall@3 on Unknownself-reported0.720