|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: BAAI/bge-small-en-v1.5 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bge-small-en-v1.5-2024-12-28_04-50-16-quality-weight-0.9 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bge-small-en-v1.5-2024-12-28_04-50-16-quality-weight-0.9 |
|
|
|
This model is a fine-tuned version of [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0182 |
|
- Spearman: 0.9303 |
|
- Pearson: 0.9235 |
|
- Mse: 0.0182 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 64 |
|
- total_train_batch_size: 256 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Spearman | Pearson | Mse | |
|
|:-------------:|:------:|:-----:|:---------------:|:--------:|:-------:|:------:| |
|
| 0.0303 | 0.0997 | 263 | 0.0333 | 0.8642 | 0.8534 | 0.0333 | |
|
| 0.0311 | 0.1994 | 526 | 0.0328 | 0.8847 | 0.8687 | 0.0328 | |
|
| 0.0362 | 0.2990 | 789 | 0.0263 | 0.8952 | 0.8847 | 0.0263 | |
|
| 0.0217 | 0.3987 | 1052 | 0.0251 | 0.9014 | 0.8929 | 0.0251 | |
|
| 0.0277 | 0.4984 | 1315 | 0.0258 | 0.9037 | 0.8950 | 0.0258 | |
|
| 0.02 | 0.5981 | 1578 | 0.0241 | 0.9086 | 0.8990 | 0.0241 | |
|
| 0.0244 | 0.6978 | 1841 | 0.0221 | 0.9103 | 0.9028 | 0.0221 | |
|
| 0.021 | 0.7975 | 2104 | 0.0217 | 0.9132 | 0.9050 | 0.0217 | |
|
| 0.0255 | 0.8971 | 2367 | 0.0212 | 0.9137 | 0.9075 | 0.0212 | |
|
| 0.0193 | 0.9968 | 2630 | 0.0209 | 0.9162 | 0.9107 | 0.0209 | |
|
| 0.017 | 1.0963 | 2893 | 0.0204 | 0.9185 | 0.9120 | 0.0204 | |
|
| 0.0213 | 1.1960 | 3156 | 0.0211 | 0.9186 | 0.9134 | 0.0211 | |
|
| 0.0143 | 1.2956 | 3419 | 0.0206 | 0.9210 | 0.9144 | 0.0206 | |
|
| 0.0153 | 1.3953 | 3682 | 0.0201 | 0.9214 | 0.9155 | 0.0201 | |
|
| 0.0188 | 1.4950 | 3945 | 0.0203 | 0.9221 | 0.9166 | 0.0203 | |
|
| 0.0173 | 1.5947 | 4208 | 0.0199 | 0.9217 | 0.9174 | 0.0199 | |
|
| 0.0163 | 1.6944 | 4471 | 0.0192 | 0.9233 | 0.9178 | 0.0192 | |
|
| 0.0131 | 1.7940 | 4734 | 0.0200 | 0.9230 | 0.9176 | 0.0200 | |
|
| 0.0201 | 1.8937 | 4997 | 0.0194 | 0.9230 | 0.9188 | 0.0194 | |
|
| 0.0176 | 1.9934 | 5260 | 0.0197 | 0.9244 | 0.9200 | 0.0197 | |
|
| 0.0111 | 2.0929 | 5523 | 0.0189 | 0.9245 | 0.9194 | 0.0189 | |
|
| 0.0126 | 2.1925 | 5786 | 0.0190 | 0.9257 | 0.9208 | 0.0190 | |
|
| 0.0152 | 2.2922 | 6049 | 0.0185 | 0.9261 | 0.9203 | 0.0185 | |
|
| 0.016 | 2.3919 | 6312 | 0.0184 | 0.9252 | 0.9208 | 0.0184 | |
|
| 0.0167 | 2.4916 | 6575 | 0.0186 | 0.9270 | 0.9217 | 0.0186 | |
|
| 0.0164 | 2.5913 | 6838 | 0.0183 | 0.9268 | 0.9226 | 0.0183 | |
|
| 0.0126 | 2.6910 | 7101 | 0.0182 | 0.9272 | 0.9229 | 0.0182 | |
|
| 0.0141 | 2.7906 | 7364 | 0.0186 | 0.9270 | 0.9221 | 0.0186 | |
|
| 0.0193 | 2.8903 | 7627 | 0.0185 | 0.9276 | 0.9234 | 0.0185 | |
|
| 0.0106 | 2.9900 | 7890 | 0.0182 | 0.9285 | 0.9242 | 0.0182 | |
|
| 0.0128 | 3.0894 | 8153 | 0.0182 | 0.9282 | 0.9242 | 0.0182 | |
|
| 0.0149 | 3.1891 | 8416 | 0.0184 | 0.9288 | 0.9233 | 0.0184 | |
|
| 0.0146 | 3.2888 | 8679 | 0.0177 | 0.9286 | 0.9244 | 0.0177 | |
|
| 0.0164 | 3.3885 | 8942 | 0.0179 | 0.9286 | 0.9237 | 0.0179 | |
|
| 0.0111 | 3.4882 | 9205 | 0.0181 | 0.9293 | 0.9246 | 0.0181 | |
|
| 0.0097 | 3.5879 | 9468 | 0.0189 | 0.9293 | 0.9243 | 0.0189 | |
|
| 0.0153 | 3.6875 | 9731 | 0.0176 | 0.9298 | 0.9252 | 0.0176 | |
|
| 0.0096 | 3.7872 | 9994 | 0.0178 | 0.9296 | 0.9249 | 0.0178 | |
|
| 0.0126 | 3.8869 | 10257 | 0.0175 | 0.9297 | 0.9253 | 0.0175 | |
|
| 0.0122 | 3.9866 | 10520 | 0.0177 | 0.9300 | 0.9253 | 0.0177 | |
|
| 0.0105 | 4.0860 | 10783 | 0.0180 | 0.9301 | 0.9253 | 0.0180 | |
|
| 0.0092 | 4.1857 | 11046 | 0.0179 | 0.9301 | 0.9251 | 0.0179 | |
|
| 0.0116 | 4.2854 | 11309 | 0.0177 | 0.9301 | 0.9250 | 0.0177 | |
|
| 0.014 | 4.3851 | 11572 | 0.0180 | 0.9299 | 0.9252 | 0.0180 | |
|
| 0.0094 | 4.4848 | 11835 | 0.0178 | 0.9301 | 0.9255 | 0.0178 | |
|
| 0.0106 | 4.5845 | 12098 | 0.0179 | 0.9300 | 0.9253 | 0.0179 | |
|
| 0.0092 | 4.6841 | 12361 | 0.0179 | 0.9301 | 0.9253 | 0.0179 | |
|
| 0.0096 | 4.7838 | 12624 | 0.0179 | 0.9301 | 0.9253 | 0.0179 | |
|
| 0.0105 | 4.8835 | 12887 | 0.0178 | 0.9301 | 0.9253 | 0.0178 | |
|
| 0.0106 | 4.9832 | 13150 | 0.0178 | 0.9301 | 0.9253 | 0.0178 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.21.0 |
|
|