inference
The model can be used directly (without a language model) as follows...
Using the HuggingSound library:
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import torch
import torchaudio
# load model and processor
processor = Wav2Vec2Processor.from_pretrained("gymeee/demo_code_switching")
model = Wav2Vec2ForCTC.from_pretrained("gymeee/demo_code_switching")
# load speech
speech_array, sampling_rate = torchaudio.load("speech.wav")
# tokenize
input_values = processor(speech_array[0], return_tensors="pt", padding="longest").input_values # Batch size 1
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
transcription
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.