inference

The model can be used directly (without a language model) as follows...

Using the HuggingSound library:

from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import torch
import torchaudio



# load model and processor
processor = Wav2Vec2Processor.from_pretrained("gymeee/demo_code_switching")
model = Wav2Vec2ForCTC.from_pretrained("gymeee/demo_code_switching")

# load speech
speech_array, sampling_rate = torchaudio.load("speech.wav")
# tokenize
input_values = processor(speech_array[0], return_tensors="pt", padding="longest").input_values  # Batch size 1

# retrieve logits
logits = model(input_values).logits

# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)

transcription
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using gymeee/demo_code_switching 1