|
--- |
|
base_model: google/gemma-2b-it |
|
library_name: transformers |
|
license: gemma |
|
language: |
|
- ko |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
The **WriteMyPaper Gemma-2-2b-it model** helps users to write abstracts of papers, fine-tuned by massive datasets of |
|
text summarization (each section and entire paper) of korean papers. |
|
|
|
|
|
## Model Details |
|
|
|
- ๋ชจ๋ธ์ ์์ฑํ๊ณ ํ
์คํธ ์ฝ๋๋ฅผ ์์ฑํ๋ ๊ณผ์ ์ ํํ ๋ฆฌ์ผ์ https://espebaum.github.io/ml/Gemma2FineTuning ์์ ํ์ธํ์ค ์ ์์ต๋๋ค. |
|
- ๊นํ๋ธ ๋ ํฌ์งํ ๋ฆฌ๋ https://github.com/Espebaum/Gemma2b-it-Write-My-Paper ์์ ํ์ธํ์ค ์ ์์ต๋๋ค. |
|
|
|
### Model Description |
|
|
|
This model is a fine-tuned version of the Gemma-2-2B-IT model, tailored for academic paper summarization and generation tasks. |
|
It focuses on processing large-scale academic data to **use abstract summaries to generate expanded full abstracts**. |
|
|
|
- **Developed by:** gyopark |
|
- **Model type:** Causal Language Model (AutoModelForCausalLM) |
|
- **Language(s) (NLP):** Korean |
|
- **License:** Gemma Term of Use |
|
- **Finetuned from model [optional]:** google/gemma-2-2b-it |
|
|
|
### Model Sources [optional] |
|
|
|
- **Repository:** https://huggingface.co/gyopark/gemma-2-2b-it-WriteMyPaper |
|
|
|
### Direct Use |
|
|
|
This model is designed for use in academic environments where summarizing, analyzing, and generating longer texts based on research papers or technical documents is required. |
|
**Users can input a brief overview of the abstract, and the model will provide a detailed expansion of the content**. |
|
|
|
### Downstream Use [optional] |
|
|
|
The model can be further fine-tuned for specific domains within academic writing, such as biomedical research, legal papers, or engineering documentation. |
|
It can also be integrated into platforms for automated academic writing assistance or research paper generation. |
|
|
|
### Out-of-Scope Use |
|
|
|
The model is not suitable for general-purpose text generation outside academic or technical contexts. |
|
It may not perform well in creative writing tasks or in generating content without structured input like research articles. |
|
|
|
### Recommendations |
|
|
|
Users should ensure that the input is structured in a format appropriate for academic or technical summarization. |
|
Since the model generates based on existing research content, it is recommended to verify the accuracy of the output for fact-checking. |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
|
|
FINETUNED_MODEL = "gyopark/gemma-2-2b-it-WriteMyPaper" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(FINETUNED_MODEL, device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(FINETUNED_MODEL) |
|
|
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
) |
|
|
|
# doc |
|
<!-- ํใ์คใ์ผ 3๊ตญ์ ์ ์น์ ํ๋์ ์ฌํ๊ฒฝ์ ์ฒด์ ๋ฅผ โ์ธ๊ณ๊ฐ์น๊ด์กฐ์ฌโ ์๋ฃ๋ฅผ ์ด์ฉํ์ฌ ๊ตญ๊ฐ ๊ฐ ๋น๊ต๋ถ์ํ์๋ค. |
|
์ค๊ตญ์ ์์์์ ๊ฐ์น ์งํฅ์ฑ์ด ๊ฐ์ฅ ๋๊ณ ์ผ๋ณธ์ด ๊ฐ์ฅ ๋ฎ๋ค. ์๊ตฌ์ ๋ฏผ์ฃผ์ฃผ์ ์งํฅ์ฑ์ ์ผ๋ณธ์ด ๊ฐ์ฅ ๋๊ณ ํ๊ตญ์ด ๊ทธ ๋ค์์ด๋ฉฐ ์ค๊ตญ์ด ๊ฐ์ฅ ๋ฎ๋ค. |
|
ํใ์คใ์ผ 3๊ตญ์ ์ ์น์ ํ๋์์์ ์ฐจ์ด๋ ์ฌํ๊ตฌ์กฐ์ ๋ณ๋ ๊ฒฝํ์ ๋ฐ์ํ๋ ๊ฒ์ด๋ค. --> |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": "๋ค์ ์์ฝ๋ ๊ธ์ ํ ๋ฌธ๋จ์ผ๋ก ๊ธธ๊ฒ ์จ์ฃผ์ธ์.:\n\n{}".format(doc) |
|
} |
|
] |
|
|
|
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
|
|
# prompt |
|
<!-- <bos><start_of_turn>user |
|
\n๋ค์ ์์ฝ๋ ๊ธ์ ํ ๋ฌธ๋จ์ผ๋ก ๊ธธ๊ฒ ์จ์ฃผ์ธ์.:\n |
|
\nํใ์คใ์ผ 3๊ตญ์ ์ ์น์ ํ๋์ ์ฌํ๊ฒฝ์ ์ฒด์ ๋ฅผ โ์ธ๊ณ๊ฐ์น๊ด์กฐ์ฌโ ์๋ฃ๋ฅผ ์ด์ฉํ์ฌ ๊ตญ๊ฐ ๊ฐ ๋น๊ต๋ถ์ํ์๋ค. |
|
์ค๊ตญ์ ์์์์ ๊ฐ์น ์งํฅ์ฑ์ด ๊ฐ์ฅ ๋๊ณ ์ผ๋ณธ์ด ๊ฐ์ฅ ๋ฎ๋ค. ์๊ตฌ์ ๋ฏผ์ฃผ์ฃผ์ ์งํฅ์ฑ์ ์ผ๋ณธ์ด ๊ฐ์ฅ ๋๊ณ ํ๊ตญ์ด ๊ทธ ๋ค์์ด๋ฉฐ ์ค๊ตญ์ด ๊ฐ์ฅ ๋ฎ๋ค. |
|
ํใ์คใ์ผ 3๊ตญ์ ์ ์น์ ํ๋์์์ ์ฐจ์ด๋ ์ฌํ๊ตฌ์กฐ์ ๋ณ๋ ๊ฒฝํ์ ๋ฐ์ํ๋ ๊ฒ์ด๋ค.<end_of_turn>\n |
|
<start_of_turn>model\n --> |
|
|
|
outputs = pipe( |
|
prompt, |
|
do_sample=True, |
|
add_special_tokens=True, |
|
max_new_tokens=1024 |
|
) |
|
|
|
outputs[0]['generated_text'] |
|
``` |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
The model was fine-tuned on a dataset of academic papers, including research articles and technical reports, |
|
focusing on generating accurate summaries and expanding scientific content. |
|
|
|
### Training Procedure |
|
|
|
- **Training regime:** Mixed precision (fp16) |
|
- **Hardware:** 1 L4 GPU |
|
- **Training time:** Approximately 3 hours |
|
- **Fine-tuning approach:** Low-Rank Adaptation (LoRA) |
|
|
|
#### Summary |
|
|
|
The model effectively processes academic papers, providing high-quality summaries and generating longer expansions of sections or abstracts. |
|
It supports Korean research documents. |
|
|
|
## Citation [optional] |
|
|
|
### Citation |
|
|
|
**BibTeX:** |
|
|
|
```bibtex |
|
@misc{gyopark_gemma_2_2b_it_WriteMyPaper, |
|
author = {gyopark}, |
|
title = {WriteMyPaper}, |
|
year = {2024}, |
|
url = {https://huggingface.co/gyopark/gemma-2-2b-it-WriteMyPaper}, |
|
} |
|
``` |