VocADT
Collection
Vocabulary Adapters for Altering LLM Vocabularies - What Languages Benefit the Most?
•
7 items
•
Updated
VocADT is a solution for vocabulary adaptation using adapter modules that are trained to learn the optimal linear combination of existing embeddings while keeping the model’s weights fixed. VocADT offers a flexible and scalable solution without requiring external resources or language constraints.
Only the input/output embeddings are replaced, while all other original weights of base model remain fixed. These are the merged version: after training the adapters, we merge the original embeddings with the adapter to generate the new embeddings.
Name | Adapted Model | Base Model | New Vocab Size | Focused Languages |
---|---|---|---|---|
VocADT-Latin-Mistral | h-j-han/Mistral-7B-VocADT-50k-Latin | Mistral | 50k | Swahili (sw), Indonesian (id), Estonian (et), Haitian Creole (ht), English (en) |
VocADT-Mixed-Mistral | h-j-han/Mistral-7B-VocADT-50k-Mixed | Mistral | 50k | Korean (ko), Greek (el), Russian (ru), Bulgarian (bg), English (en) |
VocADT-Cyrillic-Mistral | h-j-han/Mistral-7B-VocADT-50k-Cyrillic | Mistral | 50k | Russian (ru), Bulgarian (bg), Ukrainian (uk), Kazakh (kk), English (en) |
VocADT-Latin-LLama | h-j-han/Llama2-7B-VocADT-50k-Latin | Llama | 50k | Swahili (sw), Indonesian (id), Estonian (et), Haitian Creole (ht), English (en) |
VocADT-Mixed-LLama | h-j-han/Llama2-7B-VocADT-50k-Mixed | Llama | 50k | Korean (ko), Greek (el), Russian (ru), Bulgarian (bg), English (en) |
VocADT-Cyrillic-LLama | h-j-han/Llama2-7B-VocADT-50k-Cyrillic | Llama | 50k | Russian (ru), Bulgarian (bg), Ukrainian (uk), Kazakh (kk), English (en) |
from transformers import AutoModelForCausalLM, AutoTokenizer
# model_name = "mistralai/Mistral-7B-v0.1" # Base Model
model_name = "h-j-han/Mistral-7B-VocADT-50k-Latin" # Vocabulary Adapted Model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
prefix = "\nEnglish: Hello!\nSwahili: Habari!\nEnglish: What's your name?\nSwahili: Jina lako ni nani?\nEnglish: "
line = "My name is Amani."
suffix = f"\nSwahili:"
prompt = prefix + line + suffix
inputs = tokenizer(prompt, return_tensors="pt")
for item in inputs:
inputs[item] = inputs[item].cuda()
outputs = model.generate(**inputs, max_new_tokens=5)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
# Base Model Output: "Sijui nani" # Wrong output and need more tokens to complete
# VocADT Output: "Jina langu ni Amani." # Complete and good output within 5 tokens
We provide code in Github repo : https://github.com/h-j-han/VocADT
Also, please find details in this paper :
@misc{han2024vocadt,
title={Adapters for Altering LLM Vocabularies: What Languages Benefit the Most?},
author={HyoJung Han and Akiko Eriguchi and Haoran Xu and Hieu Hoang and Marine Carpuat and Huda Khayrallah},
year={2024},
eprint={2410.09644},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.09644},
}
Base model
mistralai/Mistral-7B-v0.1