File size: 2,894 Bytes
5589e7c 4992651 5589e7c 4992651 5589e7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
architecture:
backbone_dtype: float16
force_embedding_gradients: false
gradient_checkpointing: true
intermediate_dropout: 0.0
pretrained: true
pretrained_weights: ''
augmentation:
random_parent_probability: 0.1
skip_parent_probability: 0.1
token_mask_probability: 0.0
dataset:
add_eos_token_to_answer: true
add_eos_token_to_prompt: true
answer_column: output
chatbot_author: H2O.ai
chatbot_name: h2oGPT
data_sample: 1.0
data_sample_choice:
- Train
- Validation
limit_chained_samples: false
mask_prompt_labels: true
parent_id_column: parent_id
personalize: true
prompt_column:
- instruction
text_answer_separator: <|answer|>
text_prompt_start: <|prompt|>
train_dataframe: data/user/oasst/train_full_allrank.pq
validation_dataframe: data/user/oasst/val.csv
validation_size: 0.01
validation_strategy: custom
environment:
compile_model: false
find_unused_parameters: false
gpus:
- '0'
- '1'
- '2'
- '3'
huggingface_branch: main
mixed_precision: true
number_of_workers: 8
seed: -1
trust_remote_code: true
use_fsdp: false
experiment_name: h2ogpt-gm-oasst1-en-xgen-7b-8k
llm_backbone: Salesforce/xgen-7b-8k-base
output_directory: output/user/h2ogpt-gm-oasst1-en-xgen-7b-8k/
prediction:
batch_size_inference: 0
do_sample: false
max_length_inference: 1024
metric: GPT
metric_gpt_model: gpt-3.5-turbo-0301
min_length_inference: 2
num_beams: 1
num_history: 2
repetition_penalty: 1.2
stop_tokens: ''
temperature: 0.3
top_k: 0
top_p: 1.0
problem_type: text_causal_language_modeling
tokenizer:
add_prefix_space: false
add_prompt_answer_tokens: false
max_length: 6144
max_length_answer: 4096
max_length_prompt: 6144
padding_quantile: 1.0
use_fast: true
training:
adaptive_kl_control: true
advantages_gamma: 0.99
advantages_lambda: 0.95
batch_size: 2
differential_learning_rate: 1.0e-05
differential_learning_rate_layers: []
drop_last_batch: true
epochs: 1
evaluate_before_training: false
evaluation_epochs: 0.5
grad_accumulation: 1
gradient_clip: 0.0
initial_kl_coefficient: 0.2
kl_horizon: 10000
kl_target: 6.0
learning_rate: 0.0001
lora: true
lora_alpha: 32
lora_dropout: 0.1
lora_r: 16
lora_target_modules: q_proj,k_proj,v_proj,o_proj,gate_proj,down_proj,up_proj
loss_function: TokenAveragedCrossEntropy
offload_reward_model: false
optimizer: AdamW
ppo_batch_size: 1
ppo_clip_policy: 0.2
ppo_clip_value: 0.2
ppo_epochs: 4
ppo_generate_temperature: 1.0
save_best_checkpoint: false
scaling_factor_value_loss: 0.1
schedule: Cosine
train_validation_data: false
use_rlhf: false
warmup_epochs: 0.0
weight_decay: 0.0
|