metadata
language:
- en
license: apache-2.0
datasets:
- OpenAssistant/oasst_top1_2023-08-25
pipeline_tag: text-generation
model-index:
- name: >-
TinyLlama-1.1B-intermediate-step-715k-1.5T-lr-5-3epochs-oasst1-top1-instruct-V1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 31.4
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-intermediate-step-715k-1.5T-lr-5-3epochs-oasst1-top1-instruct-V1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 54.24
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-intermediate-step-715k-1.5T-lr-5-3epochs-oasst1-top1-instruct-V1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.36
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-intermediate-step-715k-1.5T-lr-5-3epochs-oasst1-top1-instruct-V1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 42.47
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-intermediate-step-715k-1.5T-lr-5-3epochs-oasst1-top1-instruct-V1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 57.7
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-intermediate-step-715k-1.5T-lr-5-3epochs-oasst1-top1-instruct-V1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 1.36
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-intermediate-step-715k-1.5T-lr-5-3epochs-oasst1-top1-instruct-V1
name: Open LLM Leaderboard
TinyLlama-1.1B-intermediate-step-715k-1.5T finetuned using OpenAssistant/oasst_top1_2023-08-25 dataset.
Qlora is used. Adapter is merged.
SFT code: https://github.com/habanoz/qlora.git
Command used:
accelerate launch $BASE_DIR/qlora/train.py \
--model_name_or_path $BASE_MODEL \
--working_dir $BASE_DIR/$OUTPUT_NAME-checkpoints \
--output_dir $BASE_DIR/$OUTPUT_NAME-peft \
--merged_output_dir $BASE_DIR/$OUTPUT_NAME \
--final_output_dir $BASE_DIR/$OUTPUT_NAME-final \
--num_train_epochs 3 \
--logging_steps 1 \
--save_strategy steps \
--save_steps 75 \
--save_total_limit 2 \
--data_seed 11422 \
--evaluation_strategy steps \
--per_device_eval_batch_size 4 \
--eval_dataset_size 0.01 \
--eval_steps 75 \
--max_new_tokens 1024 \
--dataloader_num_workers 3 \
--logging_strategy steps \
--do_train \
--do_eval \
--lora_r 64 \
--lora_alpha 16 \
--lora_modules all \
--bits 4 \
--double_quant \
--quant_type nf4 \
--lr_scheduler_type constant \
--dataset oasst1-top1 \
--dataset_format oasst1 \
--model_max_len 1024 \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--learning_rate 1e-5 \
--adam_beta2 0.999 \
--max_grad_norm 0.3 \
--lora_dropout 0.0 \
--weight_decay 0.0 \
--seed 11422 \
--gradient_checkpointing \
--use_flash_attention_2 \
--ddp_find_unused_parameters False
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 35.42 |
AI2 Reasoning Challenge (25-Shot) | 31.40 |
HellaSwag (10-Shot) | 54.24 |
MMLU (5-Shot) | 25.36 |
TruthfulQA (0-shot) | 42.47 |
Winogrande (5-shot) | 57.70 |
GSM8k (5-shot) | 1.36 |