TinyLlama-1.1B-intermediate-step-715k-1.5T finetuned using OpenAssistant/oasst_top1_2023-08-25 dataset.

SFT code: https://github.com/jzhang38/TinyLlama/tree/main/sft

Evaluation Results at: https://huggingface.co/datasets/open-llm-leaderboard/details_habanoz__tinyllama-oasst1-top1-instruct-full-lr1-5-v0.1_public/blob/main/results_2023-11-23T17-25-53.937618.json

Command used:

accelerate launch finetune.py \
    --model_name_or_path TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T \
    --output_dir ./output/1_5T_FT_lr1e-5_ep5_top1_2023-08-25 \
    --logging_steps 10 \
    --save_strategy epoch \
    --data_seed 42 \
    --save_total_limit 2 \
    --evaluation_strategy epoch \
    --eval_dataset_size 512 \
    --max_eval_samples 1000 \
    --per_device_eval_batch_size 1 \
    --max_new_tokens 32 \
    --dataloader_num_workers 3 \
    --group_by_length=False \
    --logging_strategy steps \
    --remove_unused_columns False \
    --do_train \
    --do_eval \
    --warmup_ratio 0.05 \
    --lr_scheduler_type constant \
    --dataset OpenAssistant/oasst_top1_2023-08-25 \
    --dataset_format oasst1 \
    --source_max_len 1 \
    --target_max_len 1023 \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 8 \
    --max_steps 0 \
    --num_train_epochs 5 \
    --learning_rate 1e-5 \
    --adam_beta2 0.999 \
    --max_grad_norm 1.0 \
    --weight_decay 0.0 \
    --seed 0 \
    --trust_remote_code

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 35.58
AI2 Reasoning Challenge (25-Shot) 32.85
HellaSwag (10-Shot) 58.16
MMLU (5-Shot) 25.96
TruthfulQA (0-shot) 38.35
Winogrande (5-shot) 57.70
GSM8k (5-shot) 0.45
Downloads last month
872
Safetensors
Model size
1.1B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train habanoz/tinyllama-oasst1-top1-instruct-full-lr1-5-v0.1

Evaluation results