harr's picture
add model
69b4374
|
raw
history blame
2.91 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - ingredients_yes_no
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-base-uncased-finetuned-ingredients
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: ingredients_yes_no
          type: ingredients_yes_no
          args: IngredientsYesNo
        metrics:
          - name: Precision
            type: precision
            value: 0.9865319865319865
          - name: Recall
            type: recall
            value: 0.9932203389830508
          - name: F1
            type: f1
            value: 0.9898648648648648
          - name: Accuracy
            type: accuracy
            value: 0.9972885032537961

distilbert-base-uncased-finetuned-ingredients

This model is a fine-tuned version of distilbert-base-uncased on the ingredients_yes_no dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0100
  • Precision: 0.9865
  • Recall: 0.9932
  • F1: 0.9899
  • Accuracy: 0.9973

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 47 0.2822 0.4075 0.5525 0.4691 0.8932
No log 2.0 94 0.0972 0.8429 0.8915 0.8666 0.9783
No log 3.0 141 0.0223 0.9865 0.9932 0.9899 0.9973
No log 4.0 188 0.0170 0.9798 0.9864 0.9831 0.9962
No log 5.0 235 0.0136 0.9865 0.9932 0.9899 0.9973
No log 6.0 282 0.0124 0.9865 0.9932 0.9899 0.9973
No log 7.0 329 0.0121 0.9865 0.9932 0.9899 0.9973
No log 8.0 376 0.0118 0.9865 0.9932 0.9899 0.9973
No log 9.0 423 0.0107 0.9865 0.9932 0.9899 0.9973
No log 10.0 470 0.0100 0.9865 0.9932 0.9899 0.9973

Framework versions

  • Transformers 4.10.2
  • Pytorch 1.9.0+cu102
  • Datasets 1.11.0
  • Tokenizers 0.10.3