# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
prediction
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
import librosa
import IPython.display as ipd
import numpy as np
import pandas as pd
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition"
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate):
speech_array, _sampling_rate = torchaudio.load(path)
resampler = torchaudio.transforms.Resample(_sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def predict(path, sampling_rate):
speech = speech_file_to_array_fn(path, sampling_rate)
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits = model(**inputs).logits
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
return outputs
prediction
# path for a sample
path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav'
outputs = predict(path, sampling_rate)
[{'Emotion': 'anger', 'Score': '78.3%'},
{'Emotion': 'disgust', 'Score': '11.7%'},
{'Emotion': 'fear', 'Score': '5.4%'},
{'Emotion': 'happiness', 'Score': '4.1%'},
{'Emotion': 'sadness', 'Score': '0.5%'}]
Evaluation
The following tables summarize the scores obtained by model overall and per each class.
Emotions | precision | recall | f1-score | accuracy |
---|---|---|---|---|
anger | 0.82 | 1.00 | 0.81 | |
disgust | 0.85 | 0.96 | 0.85 | |
fear | 0.78 | 0.88 | 0.80 | |
happiness | 0.84 | 0.71 | 0.78 | |
sadness | 0.86 | 1.00 | 0.79 | |
Overall | 0.806 |
Colab Notebook https://colab.research.google.com/drive/1aPPb_ZVS5dlFVZySly8Q80a44La1XjJu?usp=sharing
- Downloads last month
- 580
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.