wav2vec2-large-xlsr-moroccan-darija-v2

This model is a fine-tuned version of boumehdi/wav2vec2-large-xlsr-moroccan-darija on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2106
  • Wer: 0.1908

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.8709 0.5359 500 0.4977 0.4531
0.4841 1.0718 1000 0.2715 0.2724
0.3611 1.6077 1500 0.2311 0.2441
0.3088 2.1436 2000 0.2042 0.2366
0.2666 2.6795 2500 0.1999 0.2352
0.2303 3.2154 3000 0.1900 0.2231
0.1921 3.7513 3500 0.1839 0.2195
0.1629 4.2872 4000 0.1783 0.2153
0.1403 4.8232 4500 0.1904 0.2041
0.1178 5.3591 5000 0.1739 0.2118
0.1124 5.8950 5500 0.1996 0.1970
0.0981 6.4309 6000 0.1890 0.2016
0.091 6.9668 6500 0.2020 0.1949
0.077 7.5027 7000 0.2057 0.1929
0.0769 8.0386 7500 0.2093 0.1935
0.0726 8.5745 8000 0.2097 0.1924
0.0685 9.1104 8500 0.2088 0.1913
0.0625 9.6463 9000 0.2106 0.1908

Framework versions

  • Transformers 4.43.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
316M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hassanaitnacer/wav2vec2-large-xlsr-moroccan-darija-v2

Finetuned
(2)
this model
Finetunes
1 model