hellonlp's picture
Update README.md
8335a2b verified
|
raw
history blame
3.58 kB
metadata
license: mit
language:
  - zh
pipeline_tag: sentence-similarity

PromCSE(sup)

Data List

The following datasets are all in Chinese.

Data size(train) size(valid) size(test)
ATEC 62477 20000 20000
BQ 100000 10000 10000
LCQMC 238766 8802 12500
PAWSX 49401 2000 2000
STS-B 5231 1458 1361
SNLI 146828 2699 2618
MNLI 122547 2932 2397

Model List

The evaluation dataset is in Chinese, and we used the same language model RoBERTa Large on different methods. In addition, considering that the test set of some datasets is small, which may lead to a large deviation in evaluation accuracy, the evaluation data here uses train, valid and test at the same time, and the final evaluation result adopts the weighted average (w-avg) method.

Model STS-B(w-avg) ATEC BQ LCQMC PAWSX Avg.
BAAI/bge-large-zh 78.61 - - - - -
BAAI/bge-large-zh-v1.5 79.07 - - - - -
hellonlp/simcse-large-zh 81.32 - - - - -
hellonlp/promcse-large-zh 81.63 - - - - -

Uses

To use the tool, first install the promcse package from PyPI

pip install promcse

After installing the package, you can load our model by two lines of code

from promcse import PromCSE
model = PromCSE("hellonlp/promcse-bert-large-zh", "cls", 10)

Then you can use our model for encoding sentences into embeddings

embeddings = model.encode("武汉是一个美丽的城市。")
print(embeddings.shape)
#torch.Size([1024])

Compute the cosine similarities between two groups of sentences

sentences_a = ['你好吗']
sentences_b = ['你怎么样','我吃了一个苹果','你过的好吗','你还好吗','你',
               '你好不好','你好不好呢','我不开心','我好开心啊', '你吃饭了吗',
               '你好吗','你现在好吗','你好个鬼']
similarities = model.similarity(sentences_a, sentences_b)
print(similarities)
# [(1.0, '你好吗'),
#  (0.9324, '你好不好'),
#  (0.8945, '你好不好呢'),
#  (0.8845, '你还好吗'),
#  (0.8382, '你现在好吗'),
#  (0.8072, '你过的好吗'),
#  (0.7648, '你怎么样'),
#  (0.6736, '你'),
#  (0.5706, '你吃饭了吗'),
#  (0.5417, '你好个鬼'),
#  (0.3747, '我好开心啊'),
#  (0.0777, '我不开心'),
#  (0.0624, '我吃了一个苹果')]