herobyeKung's picture
End of training
85f260b verified
metadata
base_model: airesearch/wangchanberta-base-att-spm-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: wcBERTaAttSpmm-ggTranslate-senticPolarEmotion-bully-f2
    results: []

Visualize in Weights & Biases

wcBERTaAttSpmm-ggTranslate-senticPolarEmotion-bully-f2

This model is a fine-tuned version of airesearch/wangchanberta-base-att-spm-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5206
  • Accuracy: 0.7354
  • Precision: 0.7320
  • Recall: 0.7354
  • F1 Score: 0.7335

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Score
0.6386 1.0 120 0.6121 0.7008 0.4912 0.7008 0.5776
0.603 2.0 240 0.5663 0.7144 0.6835 0.7144 0.6762
0.5758 3.0 360 0.5828 0.7029 0.6989 0.7029 0.7007
0.5724 4.0 480 0.5518 0.7238 0.6978 0.7238 0.6894
0.5412 5.0 600 0.5336 0.7082 0.6926 0.7082 0.6975
0.5295 6.0 720 0.5222 0.7280 0.7111 0.7280 0.7145
0.4851 7.0 840 0.5090 0.7312 0.7136 0.7312 0.7162
0.4639 8.0 960 0.5153 0.7259 0.7164 0.7259 0.7200
0.4606 9.0 1080 0.5233 0.7029 0.7241 0.7029 0.7104
0.4412 10.0 1200 0.5501 0.6998 0.7496 0.6998 0.7116
0.4106 11.0 1320 0.5262 0.7155 0.7398 0.7155 0.7235
0.3976 12.0 1440 0.5148 0.7374 0.7300 0.7374 0.7329
0.3917 13.0 1560 0.5194 0.7364 0.7338 0.7364 0.7350
0.3858 14.0 1680 0.5225 0.7259 0.7293 0.7259 0.7275
0.3853 15.0 1800 0.5206 0.7354 0.7320 0.7354 0.7335

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1